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Extended Balancing of Continuous LTI Systems:
A Structure-Preserving Approach

Pablo Borja , Member, IEEE, Jacquelien M. A. Scherpen , Fellow, IEEE,
and Kenji Fujimoto , Member, IEEE

Abstract—In this article, we treat extended balancing for
continuous-time linear time-invariant systems. We take a
dissipativity perspective, thus, resulting in a characteriza-
tion in terms of linear matrix inequalities. This perspective
is useful for determining a priori error bounds. In addition,
we address the problem of structure-preserving model re-
duction of the subclass of port-Hamiltonian systems. We
establish sufficient conditions to ensure that the reduced-
order model preserves a port-Hamiltonian structure. More-
over, we show that the use of extended Gramians can be
exploited to get a small error bound and, possibly, to pre-
serve a physical interpretation for the reduced-order model.
We illustrate the results with a large-scale mechanical sys-
tem example. Furthermore, we show how to interpret a
reduced-order model of an electrical circuit again as a lower
dimensional electrical circuit.

Index Terms—Error bound, extended Gramians, model
reduction, port-Hamiltonian (PH) systems.

I. INTRODUCTION

BALANCING is a tool that is often used for model reduction
purposes, giving rise to the balanced truncation methodol-

ogy. This approach relies on realization theory, the observability,
and controllability Gramians, and it is directly related to the
concept of Hankel operator of a system. Since its introduction
in the seminal work of Moore [17], balancing for stable linear
systems has been extensively studied, in particular, a thorough
exposition of this topic can be found in [1], while in [22] a brief
tutorial is presented, which provides the basis for extending the
results to nonlinear systems [10].

Balanced truncation, based on the use of standard observ-
ability and controllability Gramians, preserves some relevant
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properties of the original system, e.g., asymptotic stability,
observability, and controllability. Furthermore, it is possible to
establish an error bound, which is given in terms of the so-called
Hankel singular values [11] corresponding to the truncated
states. Nevertheless, in this standard formulation of balanced
truncation, some original system properties, like passivity or
particular structures, are not necessarily preserved. Another
possible drawback of this approach occurs when the Hankel
singular values are large, which originates a large error bound.
To overcome this issue, the use of the so-called generalized
Gramians for model reduction purposes was introduced in [12].
The generalized observability and controllability Gramians are
solutions to the respective Lyapunov inequalities. This differs
from the standard Gramians, which are given by the solutions of
Lyapunov equations. In addition to stability, controllability, and
observability, balanced truncation using generalized Gramians
can preserve other properties, such as passivity, for the reduced-
order model. Moreover, since the solutions of the involved
Lyapunov inequalities are not unique, generalized Gramians can
be used to obtain smaller error bounds [8], and in some cases,
to preserve some particular structures for the reduced-order
model [4].

A further extension of balanced truncation can be formu-
lated by using the concept of extended Gramians, which was
introduced in [21] for discrete-time systems; and a preliminary
continuous-time counter part of these results was recently re-
ported in [23]. The discrete-time and continuous-time methods
are rather different, except from the fact that the disspativity the-
ory plays a fundamental role in both to establish the error bound.
In this approach, referred to as extended balancing, the Gramians
are solutions to specific linear matrix inequalities (LMIs) and, in
contrast to other balancing methods, the error bound is obtained
by using dissipativity arguments [25] and not through a transfer
function approach. Furthermore, this balancing method provides
more degrees of freedom to impose certain structure to the
reduced-order model, and can be potentially useful to improve
the error bound.

In this article, we focus on the extended balanced trunca-
tion of continuous-time linear time-invariant (CTLTI) systems,
where we are interested in the versatility of this methodology
to preserve specific structures. In particular, we are interested
in CTLTI port-Hamiltonian (PH) systems, which are suitable to
represent a broad range of physical systems in several domains,
e.g., RLC circuits and mechanical systems. These systems are
passive, which is convenient for control and analysis purposes.

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Moreover, the interconnection of two or more PH systems yields
another PH system, which makes this modeling approach ideal
to deal with large networks of physical systems. Some works
where the problem of model reduction related to balancing of
PH systems has been studied are [19] for LTI systems and [9]
and [14] for the nonlinear case. With respect to those works,
the novelty of this article lies in the use of extended balanced
truncation to obtain the reduced-order model and, in contrast to
the mentioned works, to establish an error bound. Moreover, this
approach is fundamental to, under some conditions, preserve the
physical interpretation of the reduced-order model.

This article aims to obtain a reduced-order model that ap-
proximates the behavior of the original system properly while
preserving its PH structure. Towards this end, we first study
extended balanced truncation for CTLTI systems, and then we
focus on its application to CTLTI PH systems for structure
preservation purposes. The main contributions of this article are
as follows.

1) We recall the results from [23], and provide novel proofs
for the error bound computation, which turn out to be
rather different than in the discrete-time case [21].

2) We identify a family of generalized Gramians that are suit-
able for balanced truncation of CTLTI PH systems with
PH structure preservation. To the best of our knowledge,
the characterization of these solutions to the Lyapunov
inequalities is new.

3) The use of extended balancing for PH structure preser-
vation and as a tool to obtain a reduced-order system
that approximates the original one with a small error
bound. Moreover, we show with an illustrative example
that this approach can be used to preserve more particular
structures, like RLC circuits structure, and a physical
interpretation for the reduced-order model.

The rest of this article is structured as follows. We provide
the basic background in Section II. The fundamental notion of
extended Gramians and the computation of the error bound are
presented in Section III. In Section IV, we introduce the general-
ized and extended balancing of PH systems with structure preser-
vation. We present two illustrative examples in Section V, where
the use of extended Gramians in the second example allows us
to preserve an even more particular structure than the PH one,
that is, the reduced-order system is physically interpretable as
an RLC circuit again. Finally, Section VI concludes this article.

Notation: We assume that all the matrices have exclusively
real entries. The matrixA ∈ Rn×n is said to be positive semidef-
inite if it is symmetric, and the inequality x�Ax ≥ 0 holds
for all x ∈ Rn holds. Similarly, A is said to be a positive
definite matrix if it is symmetric, and x�Ax > 0 holds for
all x ∈ Rn\{0}. The identity matrix is denoted as I , when
necessary, a subscript is added to indicate the dimension of the
matrix. The symbol 0 denotes a matrix or vector whose entries
are zeros. The set of positive real numbers is expressed as R>0,
while the set of nonnegative real numbers is denoted by R≥0.
Diagonal matrices are denoted as diag{a1, . . . , an}, where
a1, . . . , an are the elements of the main diagonal of the matrix.
Additionally, the symbolΛ is reserved for diagonal matrices with
positive entries, that is, the square matrix Λ ∈ Rn×n is given
by Λ = diag{σ1, . . . , σn}, where σi ∈ R>0, for i = 1, . . . , n.

Block diagonal matrices are denoted as block{A1, . . . , An},
where A1, . . . , An are square matrices. The symbol U is re-
served to orthogonal matrices, that is, UU� = I . Consider the
vectorx ∈ Rn, then‖x‖denotes the Euclidean norm ofx, that is,
‖x‖ =

√
x�x. Consider a signal e(t) ∈ Ln

2 , then ‖e‖2 denotes

the L2 norm of e(t), given by ‖e‖2 = (

∫ ∞

0

‖e(t)‖2dt)
1
2 .

II. PRELIMINARIES

Consider a CTLTI system described as

± :

{
ẋ = Ax+Bu
y = Cx

(1)

where x ∈ Rn is the state vector for m ≤ n, u ∈ Rm is the
input vector, and y ∈ Rq denotes the output vector. Accordingly,
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rq×n. Assume that the sys-
tem (1) is asymptotically stable, thus, the so-called generalized
observability Gramians Q ∈ Rn×n are positive semi-definite
solutions to the following Lyapunov inequality:

QA+A�Q+ C�C ≤ 0. (2)

Analogously, the generalized controllability Gramians P̆ ∈
Rn×n are given by positive semidefinite solutions to

AP̆ + P̆A� +BB� ≤ 0. (3)

In particular, when (2) and (3) are equalities, the matrices Q
and P̆ are known as the standard observability and controllabil-
ity Gramian, respectively. For further details, we refer the reader
to [1].

A. Generalized Balanced Truncation for LTI

A CTLTI system is said to be generalized balanced if

Q = P̆ = ΛQP (4)

where ΛQP > 0 is a diagonal matrix, see the Notation section.
Accordingly, balancing for LTI systems [17], relies on obtaining
an invertible state transformation

x̄ = W−1
g x (5)

such that

W−1
g P̆QWg = Λ2

QP (6)

where we assume that the elements of ΛQP =
diag{σ1, . . . , σn} are ordered from largest to smallest, that
is, σi > σi+1, for i = 1, . . . , n− 1. Model reduction based on
balancing is carried out by truncating the states corresponding
to the small elements of ΛQP , i.e., if σi >> σi+1, then we set

x̄i+1 = · · · = x̄n = 0.

The error bound is given by the sum of the truncated singular
values [11], i.e.,

‖Σ− Σ̂‖∞ ≤ 2
n∑

j=i+1

σj (7)

where Σ̂ corresponds to the realization of the reduced-order sys-
tem and ‖Σ− Σ̂‖∞ denotes the H∞-norm of the error system.
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For a more elaborated exposition of balancing and the cor-
responding reduced-order model properties, we refer the reader
to [26]. At this point, we highlight that the error bound obtained
through generalized balanced truncation is lower than the one
obtained with the use of standard Gramians, for further details
see [12].

III. EXTENDED BALANCED TRUNCATION

The generalized balanced truncation approach can be ex-
tended by considering the so-called extended Gramians instead
of the generalized ones. This extension has two main advantages;
on the one hand, the error bound can be reduced [20] for the
discrete-time case. On the other hand, the use of extended
Gramians provides extra degrees of freedom, which can be
exploited to impose a certain structure on the reduced-order
system.

In this section, we revisit and significantly improve the con-
cept of extended balanced truncation for the continuous-time
case, which was first introduced in [23]. Towards this end,
we introduce the following assumption, which is necessary to
establish the concept of extended Gramians.

Assumption 1: The solutions,Q and P̆ , to the inequalities (2)
and (3) are positive definite.

We stress the fact that if the system (1) is controllable and
observable, then Assumption 1 holds. Nonetheless, this latter
condition is sufficient but not necessary, thus, might be con-
servative. Moreover, if Assumption 1 is satisfied, then we can
define

P := P̆−1. (8)

Note thatP is a positive definite matrix. To ease the readability
and simplify the notation of this section, we define the following
matrices:

Ao := αIn +A

Ac := βIn +A

Xo := −QA−A�Q− C�C

Xc := − PA−A�P − PBB�P (9)

where P is defined in (8), and α > 0 and β ≥ 0. Note that, from
(2) and (3), Xo ≥ 0 and Xc ≥ 0. The definition of extended
Gramians is the starting point of the theory contained in the
following sections of this article. These concepts were intro-
duced for CTLTI systems without proofs in [23]. We present the,
slightly altered, results and their corresponding proof as follows.
Extended Gramians. Consider the following two LMIs:[

Xo Q−A�
o S

Q− S�Ao S + S�

]
≥ 0 (10)

and ⎡⎣−PA−A�P −P +A�
c T −2PB

−P + T�Ac T + T� 2T�B
−2B�P 2B�T 4Im

⎤⎦ ≥ 0 (11)

with Ao, Xo, and Ac defined as in (9), and T, S ∈ Rn×n. We
call (10) and (11) the extended observability and controllabil-
ity LMIs with extended observability Gramian (Q,S, α) and

extended inverse controllability Gramian (P, T, β), respectively.
Now, we are in position to formulate the relation between the
generalized observability Gramian and the extended observabil-
ity Gramian.

Theorem 1: (Observability Gramians)
The inequality (2) has a solution Q > 0 if and only if the LMI

(10) admits a solution (Q,S, α) with Q > 0, (S + S�) ≥ 0,
and α large enough. Moreover, if Xo, defined in (9), is positive
definite, then there exist α and S = S� > 0 such that the LMI
(10) holds.

Proof: Only if. Assume that (10) has a solution (Q,S, α), then
multiplying (10) by [In 0] from the left and by [In 0]� from
the right, it follows that (2) admits a solution Q > 0.

If: Assume there existsQ > 0 solving (2). SelectS = A−�
o Q,

with −α not an eigenvalue of A. Then, the off-diagonal blocks
of (10) are zero. Furthermore

S + S� = A−�
o Q+QA−1

o .

Accordingly, we have the following equivalence:

0 ≤ S + S� ⇐⇒
0 ≤ A�

o (S + S�)Ao = A�
oQ+QAo

= 2αQ− C�C −Xo.
(12)

Note that, since Xo does not depend on α, the inequality (12)
holds for α large enough. Hence, there exist Q > 0 and α > 0
such that the LMI (10) holds.

Symmetric S: Assume that Q > 0 and Xo > 0. Consider a
symmetric matrix Γo ∈ Rn×n verifying

αQ+ Γo > 0. (13)

Select

S = Q (αQ+ Γo)
−1 Q. (14)

Hence,S=S�>0. Now, multiply (10) by block{In, QS−1}
from the left and by block{In, S−1Q} from the right, yielding[

Xo QS−1Q−A�
oQ

QS−1Q−QAo 2QS−1Q

]
=

[
Xo Γo −A�Q

Γo −QA 2(αQ+ Γo)

]
≥ 0. (15)

Furthermore, the LMI (15) is equivalent through Schur com-
plement to

2αQ+ 2Γo −Θo ≥ 0 (16)

with

Θo := (Γo −QA)X−1
o (Γo −A�Q).

Note that there exists α, large enough, such that (16) is
satisfied. This completes the proof. �

The results on generalized and extended observability Grami-
ans have a controllability version as follows.

Theorem 2: (Controllability Gramians)
The inequality (3) has a solution P̆ > 0 if and only if the LMI

(11) has a solution (P, T, β) with P > 0. Furthermore, if Xc,
defined in (9), is positive definite, then there exist β > 0 and
T = T� > 0 such that the LMI (11) holds.
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Proof: To simplify the notation, we define

Yc := −P + (A�
c + PBB�)T.

Note that a Schur complement analysis yields that (11) is
equivalent to the following LMI:[

Xc Yc

Y �
c T + T� − T�BB�T

]
≥ 0. (17)

Only if: Assume that (11) admits a solution (P, T, β) with
P > 0, thus, equivalently, (17) is satisfied. Multiplying the latter
LMI by [In 0] from the left and by [In 0]� from the right, it
follows that

Xc ≥ 0
⇐⇒ −PA−A�P − PBB�P ≥ 0

⇐⇒ AP̆ + P̆A� +BB� ≤ 0

where we used (8) to obtain the last inequality.
If. Assume there exists P̆ > 0 solution to (3). Fix1 T =

P (βIn −A)−1 with P defined in (8), then we get

Yc = −P + (A�
c + PBB�)P (βIn −A)−1

= −P + (βP − PA−Xc)(βIn −A)−1

= −Xc(βIn −A)−1

= −XcP̆ T

and

T + T� − T�BB�T = T� (T−1 + T−� −BB�)T
= T�P̆ (2βP +Xc) P̆ T.

Hence, the LMI (17) takes the form[
Xc −XcP̆ T

T�P̆Xc T
�P̆ (2βP +Xc) P̆ T

]
≥ 0. (18)

Now, we multiply (18) by block{In, PT−�} from the left
and by block{In, T−1P} from the right, yielding[

Xc −Xc

−Xc Xc

]
+

[
0 0
0 2βP

]
≥ 0

which holds for every β ≥ 0.
Symmetric T : Assume that P > 0 and Xc > 0. Consider a

symmetric matrix Γc ∈ Rn×n verifying

βP̆ + Γc > 0. (19)

Select

T =
(
βP̆ + Γc

)−1

. (20)

Hence,T = T� > 0. Multiply (17) byblock{In, T−�} from
the left and by block{In, T−1} from the right, and substitute
(20) to obtain[

Xc −PΓc +A� + PBB�

−ΓcP +A+BB�P 2(βP̆ + Γc)−BB�

]
≥ 0 (21)

which is equivalent to

2βP̆ + 2Γc −BB� −Θc ≥ 0

1Since β ≥ 0 and �{λ(A)} < 0, β is not an eigenvalue of A.

where

Θc := (−ΓcP +A+BB�P )X−1
c (−PΓc +A� + PBB�).

Since Θc does not depend on β, it follows that the LMI
(21), and in consequence the LMI (11), holds for β > 0 large
enough. Accordingly, there exists β > 0 such that (19) and (21)
are satisfied. This completes the proof. �

Remark 1: For clarity of presentation, we assume that Xo >
0 and Xc > 0 to prove the existence of symmetric solutions
to (10) and (11), respectively. While these conditions are not
restrictive, they can be relaxed to Xo ≥ 0 and Xc ≥ 0 by using
generalized inverses. This, however, needs the introduction of
the following conditions:

(In −XoX
†
o)(Γo −A�Q) = 0

(In −XcX
†
c)(−PΓc +A� + PBB�) = 0

(22)

where X†
o and X†

c denote generalized inverses of Xo and Xc,
respectively. Note that both expressions in (22) are satisfied if
Xo > 0 and Xc > 0.

Remark 2: If Xo > 0 and Xc > 0, then the inequalities (2)
and (3) can be expressed as Lyapunov equations. Moreover,
since the system (1) is asymptotically stable, A is Hurwitz. This
implies that the mentioned Lyapunov equations have positive
definite solutions Q and P̆ . Accordingly, in this case, Assump-
tion 1 is satisfied.

Remark 3: The symmetric matrices Γo and Γc provide de-
grees of freedom in the selection of the extended Gramians.
These degrees of freedom can be used to improve the error
bound, in case the Gramians are used for model reduction, see
Section III-A, or to impose a desired structure to the reduced-
order model as given in Section V.

For the model reduction application, we assume that the
matrices S and T are symmetric. From Theorems 1 and 2, it is
clear that this assumption is not necessary to ensure the existence
of solutions to (10) and (11), but we need it for obtaining an error
bound in Section III-A.

In the extended balancing approach, we balance S and T−1

to establish the error bound. Consequently, a CTLTI system is
said to be extended balanced if

S = T−1 = ΛST (23)

whereΛST is a diagonal matrix, see the Notation section. Hence,
we look for an invertible state transformation

x̄ = W−1
e x (24)

such that

W−1
e T−1SWe = Λ2

ST . (25)

Similar to Section II-A, we assume that the elements of the
diagonal matrixΛST are ordered from largest to smallest. Hence,
the order of the CTLTI system is reduced by truncating the states
that correspond to the smallest elements of the aforementioned
matrix.

The discrete-time version of the LMIs (10) and (11) can be
found in [5] and [6]. While, a thorough exposition of extended
balanced truncation for discrete-time linear time-invariant sys-
tems is given in [20] and [21].

Authorized licensed use limited to: University of Groningen. Downloaded on February 14,2023 at 09:32:00 UTC from IEEE Xplore.  Restrictions apply. 



BORJA et al.: EXTENDED BALANCING OF CONTINUOUS LTI SYSTEMS: A STRUCTURE-PRESERVING APPROACH 261

A. Computation of the Error Bound

One of the appealing features of the balanced truncation
approach is the possibility of establishing a clear error bound.
For the generalized balanced truncation case, the inequality
(7) establishes the error bound, which is customarily obtained
through the analysis in the frequency domain of the original
system and the reduced-order one [11], [26]. An alternative
methodology to establish the error bound is to propose a storage
function for the error system and use dissipativity arguments.
Some works that have investigated this method are [15], [16],
[20], and [21] for discrete-time systems, and [25] and [23] for
continuous-time systems. In this section, we propose a storage
function, different from the one used in [23], to compute the
error bound for the extended balancing of CTLTI systems. To
this end, we assume that the linear transformation We, such
that (25) holds, is known. Then, we introduce the following
state-space systems:

Σ̄ :

{
˙̄x = Āx̄+ B̄u
ȳ = C̄x̄

(26)

Σr :

{
ẋr = Āxr + B̄u+ v(t)
yr = C̄xr

(27)

where x̄ is defined as in (24), v(t) ∈ Rn is an external signal,
and xr ∈ Rn is an auxiliary state, and

Ā := W−1
e AWe, B̄ := W−1

e B, C̄ := CWe. (28)

Now, we split x̄ into two parts, namely

x̄ =

[
x̄1

x̄2

]
(29)

where x̄1 ∈ Rk is the part of the state to be preserved after the
reduction of the model and x̄2 ∈ R�, with � := n− k, is the part
to be truncated. Accordingly, the matrices given in (28) can be
expressed as follows:

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
, B̄ =

[
B̄1

B̄1

]
, C̄ =

[
C̄1 C̄2

]
with

Ā11 ∈ Rk×k, Ā12 ∈ Rk×�, Ā21 ∈ R�×k, Ā22 ∈ R�×�

B̄1 ∈ Rk×m, B̄2 ∈ R�×m, C̄1 ∈ Rq×k, C̄2 ∈ Rq×�.

Thus, the truncation of the state x̄2 leads to the following
reduced-order model:

Σ̂ :

{
˙̂x = Âx̂+ B̂u

ŷ = Ĉx̂
(30)

where

x̂ = x̄1, Â := Ā11, B̂ := B̄1, Ĉ := C̄1.

Now, inspired by the ideas presented in [25], the approach
adopted in [20] and [21] for discrete-time, and in [23] for
continuous-time, we propose a storage function that is instru-
mental to establish the error bound. Towards this end, we first
introduce the following definitions to simplify the notation of
this section:

Q̄ := W�
e QWe, P̄ := W�

e PWe

zo := x̄− xr, zc := x̄+ xr.
(31)

where P is defined as in (8). The following proposition intro-
duces a storage function suitable to establish an error bound by
using dissipativity arguments and the LMIs (10) and (11).

Proposition 1: Consider the systems Σ, Σ̄, and Σr given in
(1), (26), and (27), respectively. Assume that the triplet (Q,S, α)
solves the LMI (10) and the triplet (P, T, β) solves the LMI (11).
Consider the storage function

S(zo, zc) = z�o Q̄zo + σ2
nz

�
c P̄ zc (32)

where σn is the nth element in the main diagonal of ΛST , and
zo andzc are defined in (31). Then,

Ṡ ≤ 4σ2
n‖u‖2 − ‖y − yr‖2

+2
[
σ2
n (βzc + żc)

� Λ−1
ST − (αzo + żo)

� ΛST

]
v.

(33)
Proof. Note that

Ṡ = 2z�o Q̄żo + 2σ2
nz

�
c P̄ żc. (34)

Define the vectors

ξo :=

[
Wezo
Wev

]
, ξc :=

⎡⎣Wezc
Wev
u

⎤⎦ .

Multiply the LMI (10) by ξ�o from the left and by ξo from the
right, yielding

2
[
v� − z�o (αIn + Ā�)

]
ΛST v

+ z�o
[
W�

e XoWezo + 2Q̄v
] ≥ 0

⇐⇒ −2(żo + αzo)
�ΛST v

+ z�o
[
W�

e XoWezo + 2Q̄v
] ≥ 0

⇐⇒ −2(żo + αzo)
�ΛST v − z�o C̄

�C̄zo

+ 2z�o Q̄
[
v − Āzo

] ≥ 0

⇐⇒ −2(żo + αzo)
�ΛST v − ‖y − yr‖2 − 2z�o Q̄żo ≥ 0

(35)

where we used the facts

żo = Āzo − v

C̄zo = y − yr.

Note that (35) implies that

2z�o Q̄żo ≤ −2(żo + αzo)
�ΛST v − ‖y − yr‖2. (36)

Now, multiply the LMI (11) by ξ�c from the left and by ξc
from the right, to obtain

− 2z�c P̄
[
Āzc + 2B̄u+ v

]
+ 4‖u‖2

+ 2
[
z�c (βIn + Ā�) + v� + 2 u�B̄�]Λ−1

ST v ≥ 0

⇐⇒ −2z�c
(
Āzc + 2B̄u+ v

)
+ 4‖u‖2

+ 2 (żc + βzc)
� Λ−1

ST v ≥ 0

⇐⇒ 4‖u‖2 + 2 (żc + βzc)
� Λ−1

ST v ≥ 2z�c P̄ żc (37)

where we used that

żc = Āzc + 2B̄u+ v.
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The proof is completed by substituting (36) and (37) in (34)
to obtain (33). �

In order to establish the error bound, we propose a particular
selection of the signal v(t) that allows us to compare the behavior
of systems (26) and (27).

Lemma 1: Consider � = 1. Assume that systems (27) and (30)
are initially at rest. Consider the partition xr = [x�

r1
x�
r2
]�, with

xr1 ∈ Rn−1 and xr2 ∈ R. Choose

v(t) =

[
0

Avxr2(t)− Ā21xr1(t)− B̄2u(t)

]
(38)

with Av ∈ R such that Ā22 +Av �= 0. Then, ŷ(t) = yr(t), and
xr2(t) = 0 for every t ≥ 0.

Proof: To establish the proof, replace (38) in (27) to obtain

ẋr1 = Ā11xr1 + Ā12xr2 + B̄1u
ẋr2 =

(
Ā22 +Av

)
xr2 .

(39)

Since xr(0) = 0, from (39) we have the following chain of
implications:

ẋr2 = 0 ∀ t ≥ 0 =⇒ xr2(t) = 0 ∀ t ≥ 0
=⇒ ẋr1 = Ā11xr1 + B̄1u.

(40)

�
Since x̂(0) = 0, the last expression of (40) implies that x̂(t) =

xr1(t) for all t ≥ 0. Hence

yr = C̄1xr1 = Ĉx̂ = ŷ.

Using the results of Proposition 1 and Lemma 1, the following
Lemma establishes an error bound for the case � = 1, that is,
when only one state is truncated.

Lemma 2: Consider the balanced system (26) with extended
observability Gramian (Q̄,ΛST , α), and inverse extended con-
trollability Gramian (P̄ ,Λ−1

ST , β), where α = β and � = 1. As-
sume that systems (50), (30), and (27) are initially at rest and
select v as in (38). Then

‖Σ− Σ̂‖∞ ≤ 2σn.

Proof: Define

v2 := Avxr2 − Ā21xr1 − B̄2u.

Hence, we can rewrite (38) as follows:

v =

[
0
v2

]
.

On the other hand, from Lemma 1, we have that

xr =

[
x̂
0

]
, yr = ŷ.

Therefore, since α = β, we get

(αzo + żo)
� ΛST v = σn(αx̄2 + ˙̄x2)v2

= σ2
n (βzc + żc)

� Λ−1
ST v.

(41)

Now, consider the storage function S(zo, zc), given in (32).
Then, substituting (41) in (33), its derivative along the trajecto-
ries reduces to

Ṡ ≤ 4σ2
n‖u‖2 − ‖y − ŷ‖2 (42)

where we used (41). Moreover, integrating (42) from 0 to ∞,
yields

0 ≤ 4σ2
n‖u‖22 − ‖y − ŷ‖22

which implies

‖y − ŷ‖2
‖u‖2 ≤ 2σn. (43)

We recall, see [1], that the H∞-norm of the error system
satisfies the following relationship:

‖Σ− Σ̂‖∞ = sup
‖y − ŷ‖2
‖u‖2 (44)

for u ∈ L2, ‖u‖2 �= 0. Therefore, from (43) and (44), we get

‖Σ− Σ̂‖∞ ≤ 2σn

which completes the proof. �
Now, we are in the position to present the main result of this

article in terms of the error bound for model reduction of CTLTI
systems based on extended balanced truncation.

Theorem 3: Consider the balanced system (26) with extended
observability Gramian (Q̄,ΛST , α) and inverse extended con-
trollability Gramian (P̄ ,Λ−1

ST , β), where α = β and

ΛST = diag{σ1, . . . , σn}.
Consider the truncated kth order system (30). Then, the error

bound is given by the following inequality:

‖Σ− Σ̂‖∞ ≤ 2

n∑
j=k+1

σj . (45)

Proof: To establish the proof, apply iteratively Lemma 2. �
Similar to the discrete-time results reported in [20] and [21],

the error bound (45) is obtained by proposing a storage function
and using dissipativity arguments, as in [25]. This procedure
contrasts to the traditional analysis using transfer functions.

Note that the extended Gramians depend on the generalized
ones and the parameters α and β, and the symmetric matrices
Γo and Γc verifying (13) and (19), respectively. The following
proposition establishes that for any given generalized Gramians
an appropriate selection ofΓo andΓc ensures that the error bound
obtained via extended balanced truncation is smaller than that
the one obtained via generalized balanced truncation.

Proposition 2: Given the generalized observability and con-
trollability Gramians Q and P̆ , there exist matrices T and S,
and constants α and β such that extended balanced truncation
guarantees a smaller error bound for the reduced-order system
than generalized balanced truncation.

Proof: The error bound associated with generalized bal-
anced truncation is determined by the diagonal matrix ΛQP ,
verifying (4). Similarly, the error bound associated with ex-
tended balanced truncation depends on the diagonal ma-
trix ΛST , which satisfies (23). Hence, the resulting error
bound from the extended balanced truncation approach is
smaller if

ΛST < ΛQP . (46)
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To prove that the degrees of freedom in extended balancing
can be chosen such that (46) holds, select S and T as in (14) and
(20), respectively. Consider α = β, and fix

Γo = εoQ, Γc = −εcP̆ (47)

with 0 < εo and 0 < εc < α. Therefore, from (14) and (20), we
get that

T−1S =
α− εc
α+ εo

P̆Q.

Accordingly, the linear transformationWg such that (6) holds,
also satisfies

W−1
g T−1SWg =

α− εc
α+ εo

Λ2
QP = Λ2

ST . (48)

Since α−εc
α+εo

< 1, the inequality (46) is satisfied. �
Remark 4: If the matrices Γo and Γc are chosen as zero

in (14), (20), and α = β, then S = 1
αQ and T = 1

αP . Hence,
QP̆ = ST−1 and ΛQP = ΛST . Accordingly, the error bound
obtained via extended balancing coincides with the error bound
obtained from the generalized balancing approach. Moreover,
the reduced-order model obtained from both methods is the
same.

IV. BALANCING OF CTLTI PH SYSTEMS

The PH framework has been proven suitable to capture
physical phenomenon in different domains while preserving
conservation laws [7], [24]. In this framework, it is possible
to represent large-scale networks of complex physical systems
and, at the same time, underscore the roles of the energy, the
interconnection pattern, and the dissipation in the behavior of
such systems. Moreover, the passivity property of these systems
can be straightforwardly proven by selecting the Hamiltonian
function as the storage function. Thus, given the possible phys-
ical interpretation of the PH models and their geometrical prop-
erties; this framework is appealing from both points of view: the
theoretical and the practical one. Therefore, preserving the PH
structure for the reduced-order model is interesting for analysis
purposes, and might be useful to give an interpretation of the
behavior of the reduced-order system. This section addresses the
model reduction problem of CTLTI PH systems while preserving
the PH structure for the reduced-order system. Furthermore, in
some cases, more particular structures than the PH one are pre-
served, endowing the reduced-order model with a more specific
physical interpretation.

A. CTLTI PH Systems

The representation of a CTLTI PH system is given by

ΣH :

⎧⎨⎩
ẋ = (J −R)Hx+Bu
y = B�Hx
H(x) = 1

2x
�Hx

(49)

where x ∈ Rn is the state vector, u, y ∈ Rm are the input and
output vectors, respectively,H(x) represents the Hamiltonian of
the system with H = H� > 0, and R = R� ≥ 0 and J = −J�

represent the dissipation and the interconnection matrix, respec-
tively. In order to simplify notation, we define F := J −R.

The objective of this article is twofold; on the one hand, we
aim to balance system (49) and obtain a lower order model.
On the other hand, we want the reduced model to have a PH
structure, because of the interpretation and the interconnection
properties of this kind of systems. Towards this end, we assume
that system (49) is asymptotically stable, and we look for an
invertible linear transformation W that balances the system.
Such transformation is given by W = Wg in the generalized
case, while in the extended case we have W = We. Then, we
write the dynamics of the balanced system as follows:

Σ̄H :

{
˙̄x = F̄ H̄x̄+ B̄u
ȳ = B̄�H̄x̄

where

F̄ := W−1FW−�, H̄ := W�HW, B̄ := W−1B.

Hence, if we split x̄ as in (29), the balanced system can be
expressed as

Σ̄H :

⎧⎪⎪⎨⎪⎪⎩
[
˙̄x1

˙̄x2

]
=

[
F̄11 F̄12

F̄21 F̄22

] [
H̄11 H̄12

H̄�
12 H̄22

] [
x̄1

x̄2

]
+

[
B̄1

B̄2

]
u

ȳ =
[
B̄�

1 B̄�
2

] [ H̄11 H̄12

H̄�
12 H̄22

] [
x̄1

x̄2

]
(50)

with

F̄11, H̄11 ∈ Rk×k, F̄22, H̄22 ∈ R�×�, F̄12, H̄12 ∈ Rk×�

B̄1 ∈ Rk×m, F̄21 ∈ R�×k, B̄2 ∈ R�×m.

Problem Formulation for PH Systems: Given the system (49),
find an invertible linear transformation W , that performs the
balancing of the system and at the same time satisfies

H̄12 = 0. (51)

Note that, if (51) holds, the truncation leads to the following
reduced-order system:

Σ̂H :

⎧⎨⎩
˙̂x = F̄11H̄11x̂+ B̄1u
ŷ = B̄�

1 H̄11x̂

Ĥ(x̂) = 1
2 x̂

�H̄11x̂

(52)

which is another CTLTI PH system, with x̂ = x̄1. Therefore,
it follows that one solution to the problem of model reduction
with PH structure preservation takes place when the Hamiltonian
matrix of the balanced system, H̄ , is diagonal. In such case, our
problem is reduced to the simultaneous diagonalization of three
matrices, namely, (Q,P,H) or (S, T,H).

Remark 5: The complete diagonalization of H is not neces-
sary. In fact, a block diagonalization that ensures (51) is enough
to preserve the PH structure. Nevertheless, ifH is not a diagonal
matrix, then it is necessary to know the dimension of the part of
the state to be truncated.

The subsequent sections of this article are devoted to the
identification of a transformation W that balances the system
and ensures that (51) is satisfied.

B. Generalized Balancing of CTLTI PH Systems

In this section, we study the generalized balancing method
for CTLTI PH systems, which is the starting point of extended
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balancing of CTLTI PH studied in Section IV-C. Further, we
provide sufficient conditions to ensure the existence of a trans-
formation Wg that complies with the requirements established
in Section IV-A. To this end, we revisit the following theorem,
which establishes necessary and sufficient conditions for the
existence of a transformation that diagonalizes simultaneously
three matrices when at least one of them has definite sign.

Theorem 4 ([18]): Let L,M, and N be symmetric matrices.
In the case of at least one fixed-sign quadratic form (e.g., M
positive definite), the condition

LM−1N = NM−1L (53)

is necessary and sufficient for the existence of a linear invertible
congruent transformation W that diagonalizes simultaneously
L,M , and N .

For the proof and further details about Theorem 4, we refer
the reader to [18] and [3]. For a thorough exposition on simul-
taneously diagonalizable matrices, we refer the reader to [13],
Chapter 4. In generalized balancing of CTLTI PH systems, the
condition (53) takes the form

HP̆−1Q = QP̆−1H. (54)

Accordingly, we look for Q and P̆ verifying (2) and (3),
respectively, such that (54) holds. A trivial solution to this
problem takes place when Q or P̆ coincides with the (scaled)
Hamiltonian matrixH or its inverse. This idea was studied in [9]
and [14], among other works; and for the sake of completeness,
the following proposition identifies a class of CTLTI PH sys-
tems, for which the (scaled) Hamiltonian matrix, or its inverse,
solves the inequalities (2) and (3).

Proposition 3: Consider δ ∈ R>0. Assume that the system
(49) is asymptotically stable. If the following condition holds:

2δR−BB� ≥ 0. (55)

Then, Q = δH solves (2), and P̆ = δH−1 is a solution to (3).
Proof: To establish the proof, note that for CTLTI PH sys-

tems, (2) and (3) take the forms

QFH +HF�Q+HBB�H ≤ 0 (56)

FHP̆ + P̆HF� +BB� ≤ 0 (57)

respectively. Hence, substituting Q = δH in (56), we obtain

0 ≥ δHFH + δHF�H +HBB�H
= H(BB� − 2δR)H

⇐⇒ 0 ≤ 2δR−BB�.

On the other hand, replacing P̆ = δH−1 in (57), we have

0 ≥ δF + δF� +BB�

= −2δR+BB�

⇐⇒ 0 ≤ 2δR−BB�. �

Condition (55) is satisfied by systems that have dissipation in
all the input channels, e.g., fully damped mechanical systems.
Nonetheless, R and B are system parameters, thus, it might
happen that condition (55) is not satisfied by the system (49). In
order to overcome this issue, we state following two propositions

to identify generalized Gramians, such that the triplet (Q, P̆ ,H)
verifies (54) and solves the Lyapunov inequalities (56) and (57).
These propositions represent the main result of this article in
terms of generalized balancing with PH structure preservation.

Proposition 4: Let P̆ be a solution to (57). Consider a full
rank matrix φP ∈ Rn×n verifying the following:

P̆ = φ�
PφP

φPHφ�
P = UHPΛHPU

�
HP

where UHP is an orthogonal matrix and ΛHP is a diagonal
matrix, whose entries are the singular values of φPHφ�

P , see
the notation at the end of Section I. Define the matrices

Fc := U�
HPφ

−�
P Fφ−1

P UHP

Bc := U�
HPφ

−�
P B.

(58)

Assume that

−Λ2
QPΛ

−1
HPFc −F�

c Λ
−1
HPΛ

2
QP − BcB�

c ≥ 0 (59)

holds for a diagonal matrix ΛQP . Hence, (56) is solved by

Q = φ−1
P UHPΛ

2
QPU

�
HPφ

−�
P . (60)

Moreover, the transformation

Wgc = φ�
PUHPΛ

− 1
2

QP (61)

balances the system and diagonalizes H .
Proof: To establish the proof, we define

Xo := −Λ2
QPΛ

−1
HPFc −F�

c Λ
−1
HPΛ

2
QP − BcB�

c .

Note that, if (59) holds, we have the following chain of
implications:

Xo ≥ 0
⇐⇒ φ−1

P UHPΛHPXoΛHPU
�
HPφ

−�
P ≥ 0

⇐⇒ −QFH −HF�Q−HBB�H ≥ 0
⇐⇒ QFH +HF�Q+HBB�H ≤ 0

where we used (58) and (60). Moreover

W�
gcQWgc = ΛQP

W−1
gc P̆W−�

gc = ΛQP

W�
gcHWgc = Λ−1

QPΛHP .

This completes the proof. �
The following proposition is the dual version of Proposition 4

and relaxes condition (55), in this case, for a given generalized
observability Gramian Q.

Proposition 5: Let Q be a solution to (56). Consider a full
rank matrix φQ ∈ Rn×n verifying the following:

Q = φ�
QφQ

φ−�
Q Hφ−1

Q = UHQΛHQU
�
HQ.

Define the matrices

Fo := U�
HQφQFφ�

QUHQ

Bo := U�
HQφQB.

(62)

Assume that

−FoΛHQΛ
2
QP − Λ2

QPΛHQF�
o − BoB�

o ≥ 0 (63)
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holds for a diagonal matrix ΛQP . Hence, (57) is solved by

P̆ = φ−1
Q UHQΛ

2
QPU

�
HQφ

−�
Q . (64)

Moreover, the transformation

Wgo = φ−1
Q UHQΛ

1
2

QP (65)

balances the system and diagonalizes H .
Proof: Define

Xc := −FoΛHQΛ
2
QP − Λ2

QPΛHQF�
o − BoB�

o .

Therefore, if (63) is satisfied, we have

Xc ≥ 0
⇐⇒ φ−1

Q UHQXcU
�
HQφ

−�
Q ≥ 0

⇐⇒ −FHP̆ − P̆HF� −BB� ≥ 0

⇐⇒ FHP̆ + P̆HF� +BB� ≤ 0

where we used (62) and (64). To complete the proof, note that

W�
goQWgo = ΛQP

W−1
go P̆W−�

go = ΛQP

W�
goHWgo = ΛHQΛQP .

�
In Propositions 4 and 5, the condition (55) is relaxed by im-

posing a particular structure to the generalized observability and
controllability Gramians, respectively. Such structure depends
on the Hamiltonian matrix, however, it is less restrictive than
(55). Indeed, if this latter condition is satisfied, then (59) and
(63) hold. Using the results presented in this section, we studied
following extended balancing of CTLTI PH systems. As was
mentioned in Section III, the use of extended Gramians can be
advantageous for different purposes, for instance, to obtain a
lower error bound or to impose a more particular structure to the
reduced-order model.

C. Extended Balancing of CTLTI PH Systems

Similar to the generalized balancing case, in this section,
we provide sufficient conditions for the existence of a linear
transformationWe that balances the system and diagonalizes the
Hamiltonian matrix. Towards this end, we introduce following
two propositions that provide a suitable transformationWe. Such
propositions constitute the main result of this article, regarding
extended balancing with PH structure preservation.

Proposition 6: Let P̆ be a solution to (57) such that Xc > 0.
Select β and Γc such that (19) holds and T , defined in (20),
solves the LMI (11). Consider a full rank matrix φT ∈ Rn×n

verifying the following:

T−1 = φ�
TφT

φTHφ�
T = UHTΛHTU

�
HT .

Define the matrices

Fec := U�
HTφ

−�
T Fφ−1

T UHT

Bec := U�
HTφ

−�
T B.

(66)

Assume that

−Λ2
QTΛ

−1
HTFec −F�

ecΛ
−1
HTΛ

2
QT − BecB�

ec > 0 (67)

holds for a diagonal matrix ΛQT . Then, (56) is solved by

Q = φ−1
T UHTΛ

2
QTU

�
HTφ

−�
T . (68)

Select α such that the matrix

S =
1

α+ εo
Q (69)

with εo ≥ 0, solves the LMI (10). Then, the invertible transfor-
mation

Wec =
4
√
α+ εoφ

�
TUHTΛ

− 1
2

QT (70)

balances the system and diagonalizes H .
Proof: Define

Xeo := −Λ2
QTΛ

−1
HTFec −F�

ecΛ
−1
HTΛ

2
QT − BecB�

ec.

Then, the inequality (67) is satisfied if and only if

Xeo > 0
φ−1
T UHTΛHTXeoΛHTU

�
HTφ

−�
T > 0

⇐⇒ Xo > 0
⇐⇒ QFH +HF�Q+HBB�H < 0
⇐⇒ QFH +HF�Q+HBB�H ≤ 0

where we used

A = FH. (71)

Select Γo as in (47), with 0 ≤ εo. Hence, for α large enough,
the selection of S given in (69) solves the LMI (10).

To establish the last part of the proof, define

ΛST :=
1√

α+ εo
ΛQT .

Note that

W−1
ec T−1SWec = Λ2

ST

W�
ecHWec = ΛHTΛ

−1
ST .

�
The following proposition is the dual version of Proposition 6.
Proposition 7: Let Q be a solution to (56) such that Xo > 0.

Select α and Γo, such that (13) holds and S, defined in (14),
solves the LMI (10). Consider a full rank matrix φS ∈ Rn×n

verifying the following:

S = φ�
SφS

φ−�
S Hφ−1

S = UHSΛHSU
�
HS .

Define the matrices

Feo := U�
HSφSFφ�

SUHS

Beo := U�
HSφSB.

(72)

Assume

−FeoΛHSΛ
2
SP − Λ2

SPΛHSF�
eo − BeoB�

eo > 0 (73)

holds for a diagonal matrix ΛSP . Thus, (57) is solved by

P̆ = φ−1
S UHSΛ

2
SPU

�
HSφ

−�
S . (74)

Select β such that the matrix

T−1 = (β − εc) P̆ (75)
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with 0 ≤ εc < β, solves the LMI (11). Then,

Weo = 4
√

β − εcφ
−1
S UHSΛ

1
2

SP (76)

balances the system and diagonalizes H .
Proof: Define

Xeo := −FeoΛHSΛ
2
SP − Λ2

SPΛHSF�
eo − BeoB�

eo.

Hence, if (73) holds, we have the following chain of implica-
tions:

Xeo > 0
⇐⇒ φ−1

S UHSXcoU
�
HSφ

−�
S > 0

⇐⇒ −FHP̆ − P̆HF� −BB� > 0.

Moreover,

−FHP̆ − P̆HF� −BB� > 0

=⇒
{
FHP̆ + P̆HF� +BB� ≤ 0
Xc > 0

where we used (71). Select Γc, as in (47), with 0 ≤ εc < α.
Accordingly, for β large enough, the selection of T given in
(75) solves the LMI (11).

To establish the last part of the proof, define

ΛST :=
√
β − εcΛSP .

Note that

W−1
eo T−1SWeo = Λ2

ST

W�
eoHWeo = ΛHSΛST . �

We remark that Γo and Γc are degrees of freedom in the
selection ofS andT , respectively. These matrices can be selected
in order to improve the error bound or preserve more particular
structures as is given in Section V.

The following algorithm summarizes the extended balancing
method for PH systems with structure preservation.

S1) Find a positive definite matrix P̆ such that

FHP̆ + P̆HF� +BB� < 0.

S2) Consider,A = FH . Propose a symmetric matrixΓc and
a constant β > 0 such that T , defined as in (20), solves
the LMI (11).

S3) If the inequality (55) holds, select Q = δoH and S =
1

α+εo
Q, with δo, εo > 0. Otherwise, use the result of

Proposition 6.
S4) Check if the proposed S solves the LMI (10), with

α = β. If not, return to S2 and propose a larger β.
S5) Find the linear transformation We such that (25) holds.

Note that a similar algorithm starting for the proposition of Q
can be straightforwardly obtained.

V. EXAMPLES

In this section, we present two examples to illustrate the
applicability of the results reported in previous sections.
Both examples represent physical systems. The first one is a

larger scale mass–spring–damper mechanical system, where we
preserve the PH structure. While, the second example represents
a smaller scale RLC circuit network, where we illustrate how to
preserve the RLC structure in addition to the PH one.

A. Mechanical System

Consider the mechanical system shown in Fig. 1, which con-
sists of 200 masses, 198 linear dampers, and 200 linear springs.
This system can be represented in the PH framework as follows:[

q̇
ṗ

]
=

[
0 I200

−I200 −R2

]
︸ ︷︷ ︸

F

[
K 0
0 M−1

]
︸ ︷︷ ︸

H

[
q
p

]
+

[
0
G

]
︸ ︷︷ ︸

B

u, (77)

where q, p ∈ R200,M ∈ R200×200 is a positive definite diagonal
matrix, K ∈ R200×200 is positive definite, R2 ∈ R200×200 is a
positive semidefinite matrix that contains the information of the
dampers, and G = [1 0]�.

The objective is to reduce the order of the model and ensure
that the PH structure is preserved. Note that, independently of
δ > 0, this system does not satisfy the condition (55). Thus,
the Hamiltonian matrix cannot be proposed as a generalized
Gramian.

To illustrate the results of Section IV, we obtain PH reduced-
order models via generalized balanced truncation and extended
balanced truncation. Then, we compare the results obtained from
both techniques. For the generalized balancing case, we proceed
as follows.

1) We consider a positive definite matrix X̆c. Then, using
MATLAB, we solve the Lyapunov equation

FHP̆ + P̆HF� +BB� + X̆c = 0

to obtain the generalized controllability Gramian P̆ .
2) We solve the LMI (59). Then, we propose Q and Wgc as

in Proposition 4.
3) We use Wgc, defined in (61), to balance the system.

For the extended balancing, we follow the algorithm provided
at the end of Section IV. To this end, we consider the same P̆ as
in the generalized balancing method. To address S2, we propose
β > 0 such that the LMI (11) is satisfied by T = 1

βP. Then, we

consider Γc = −εcP̆ , with 0 < εc < β, such that the LMI (11)
is satisfied by

T =
1

β − εc
P.

For S3, we look for a diagonal solution to (67), and we propose
Q as in (68). Then, we select S as in (69). The rest of the
algorithm is straightforward, where we useWec, defined in (70),
to balance the system.

For illustration purposes, we consider that the masses
vary between 0.4 and 0.6[kg], spring constants between 0.9
and 1.1[kg/s2], and damping coefficients between 1.8 and
2.2[kg/s]. We select a matrix X̆c that guarantees a small trace
of P̆ without causing numerical errors for the LMI solver of
MATLAB. Here, we omit the matrices involved in the balancing
processes due to their large dimension. The data of this example
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Fig. 1. Mass–spring–damper network.

Fig. 2. Singular values resulting from generalized balancing and ex-
tended balancing. (a) Generalized balancing. (b) Extended balancing.

can be found in [2]. Fig. 2 shows the singular values obtained
from both balancing techniques, where it is evident that the
singular values corresponding to extended balancing are con-
siderably smaller for all n = 1, . . . , 400. Thus, a smaller error
bound is expected for extended balanced truncation. Moreover,
the last 100 singular values are much smaller than the first
300 ones in both cases. Consequently, we anticipate that a
reduced-order system of dimension 300 can offer an appropriate
approximation of the original system.

To compare the performance of both model reduction tech-
niques, we present reduced-order models of dimensions 300,
200, and 100, obtained through each balanced truncation ap-
proach. To this end, we perform simulations using MATLAB,
under initial conditions zero and inputs of the form u =
2 sin(ωt). The frequencyω is chosen as the peak frequency of the
error system obtained via generalized balanced truncation. To
present the results, we adopt the following notation: EB stands
for extended balancing and GB stands for generalized balancing.
The dimension of the reduced-order system is denoted by k.
The output of the original system is represented by y, the output
of the reduced-order system obtained via generalized balanced
truncation is denoted by yG, and the output of the reduced-order
system obtained via extended balanced truncation is given byyE .

The results of the simulations are shown in Figs. 3–6 and
given in Table I. While the error bound obtained via extended
balancing is considerably smaller in all the cases, for k = 300,
the performance of both methodologies is similar. This can be
observed in Fig. 3, where the behavior of the reduced-order
system outputs is very similar to the behavior of the original
system output. Moreover, the H∞-norm of both error systems
coincides as given in Table I. However, we observe in Figs. 4–6

Fig. 3. Outputs comparison for k = 300.

Fig. 4. Outputs comparison for k = 200.

that the extended balanced truncation approach approximates
better the original system as the number of truncated states
increases.

B. RLC Circuit

Consider the RLC network shown in Fig. 7, which admits a
PH representation of the form (49) with

J =

[
0 J1

−J�
1 0

]
, R =

[
R−1

C 0

0 RL

]

H = diag

{
1

C1
,
1

C2
,
1

C3
,
1

C4
,
1

C5
,
1

L1
,
1

L2
,
1

L3
,
1

L4
,
1

L5

}
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Fig. 5. Outputs comparison for k = 100.

Fig. 6. Comparison of the errors obtained from both techniques.
(a) k = 200. (b) k = 100.

TABLE I
H∞-NORM OF THE ERROR SYSTEM AND SUM OF THE SINGULAR VALUES

RC = diag{RC1
, RC2

, RC3
, RC4

, RC5
}

RL = diag{RL1
, RL2

, RL3
, RL4

, RL5
}

J1 =

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , B =

⎡⎣05

1
04

⎤⎦
where xi are the charges in the capacitors and x5+i denote the
fluxes in the inductors, for i = 1, . . . , 5.

The objective is to reduce the order of the model and obtain a
PH system that can be interpreted as an RLC circuit. Hence, we
require that the reduced PH system has a diagonal damping ma-
trix, and the interconnection matrix must be skew-symmetric and
block antidiagonal. Note that this is a more particular structure

TABLE II
PARAMETERS OF THE RLC NETWORK

than the PH structure given in (49). We stress that the matrices
J, R, and H can be decomposed into block matrices whose
dimension depends on the number of inductors and capacitors,
i.e., 5. Moreover, H is already diagonal. Thus, a block diagonal
transformation W ensures that H̄ remains diagonal, and the
block structure that determines the RLC architecture of the
system is not affected. Note that the damping matrix R has full
rank. Hence, we can select

Q = δoH, P̆ = δcH
−1

where δo and δc are positive constants such that (55) holds.
Therefore, both generalized Gramians are diagonal, and the
resulting transformation Wg does not modify the structure of
the original system. Nevertheless, the Hankel singular values
are given by ΛQP =

√
δoδcIn. Since all the entries of ΛQP

are equal, the criterion of truncating the states related to the
smallest singular values is impractical, and further information
is required to decide which states can be removed. To deal
with this situation, we adopt the extended balancing approach.
In particular, we want to have a significant contrast among
the entries of ΛST , which provides information about which
states can be truncated without affecting the response of the
reduced-order system significantly. To this end, we follow the
algorithm provided at the end of Section IV with a minor
modification, i.e., since the generalized Gramians are diagonal,
Γc can be chosen as a diagonal matrix with nonpositive entries
and Γo can be selected as a diagonal matrix with nonnegative
entries. This selection improves the error bound and provides
the desired contrast among the singular values. Moreover, the
matrices H , T , and S are diagonal. As a result, We is a block
diagonal matrix. Thus, we can express the matricesWe andΛST

as follows:

We = block{W1,W2}
ΛST = block{ΛST1

,ΛST2
}

ΛSTi
= diag{σi1 , . . . , σi5}, i = 1, 2.

At this point, we make following three observations regarding
the preservation of the RLC structure.

1) To preserve the RLC structure, it is necessary to ensure
that W is a block diagonal matrix.

2) We truncate the states related to the entries of ΛST in
pairs, that is, one state related to one element of ΛST1

and one state related to one entry from ΛST2
. A physical

interpretation of this approach is that we are removing the
same number of inductors and capacitors.
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Fig. 7. RLC network.

Fig. 8. Normalized singular values resulting from extended balancing.
(a) Normalized singular values related to the capacitors. (b) Normalized
singular values related to the inductors.

Fig. 9. Input signal u.

Fig. 10. Outputs comparison for different reduced-order models.
(a) k = 8. (b) k = 6.

Fig. 11. Errors from different reduced-order models. (a) k = 8.
(b) k = 6.

3) By fixing Γo and Γc different from zero, we ensure that
the entries of ΛST are different. Then, we can truncate
the states related to the smallest entries of each submatrix
ΛSTi

.
To illustrate the methodology, we consider the values in

Table II. Due to space constraints, we omit the matrices involved
in the extended balancing procedure. The corresponding data
can be found in [2]. Fig. 8 shows the normalized singular values
of the balanced system, where we observe that the last two
singular values of each block ΛSTi

are smaller than the first
three. Consequently, we expect that, in the extended balancing
approach, the reduced-order models obtained by truncating σi5 ,
or σi4 and σi5 , approximate the original system properly. We
carry out simulations to compare the behavior of the original
system with the reduced-order systems of dimensions k = 8 and
k = 6 obtained via both balancing methodologies. To this end,
we consider the input shown in Fig. 9 and initial conditions equal
to zero. Figs. 10 and 11 show the comparison of the outputs and
the errors, respectively, where EB stands for extended balancing,
GB stands for generalized balancing, the output of the original
system is represented by y, the output of the reduced-order
system obtained via generalized balanced truncation is denoted
by yG, and the output of the reduced-order system obtained via
extended balanced truncation is given by yE . Using MATLAB,
we compute the H∞-norm for each case and methodology. The
corresponding values are given in Table III, where it is evident
that the extended balanced truncation approach exhibits a better
performance.

To illustrate that the RLC structure is preserved, we consider
the reduced-order model of dimension k = 6, i.e., we truncate
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Fig. 12. Reduced RLC network.

TABLE III
H∞-NORM OF THE ERROR SYSTEM

the states related toσi4 and σi5 . Hence, the reduced-order model
admits a PH representation with

Rr = block{R−1
Cr

, RLr
}, Jr =

[
0 J1r

−J�
1r

0

]
Hr = diag

{
1

C1r

,
1

C2r

,
1

C3r

,
1

L1r

,
1

L2r

,
1

L3r

}
RCr

:= diag
{
RC1r

, RC2r
, RC3r

}
RLr

:= diag
{
RL1r

, RL2r
, RL3r

}
J1r =

⎡⎣ 1 −γ2 0
0 1 −γ3
0 0 1

⎤⎦ , Br =

⎡⎣03

γ1
02

⎤⎦ .

Moreover, the reduced-order model admits the RLC realiza-
tion shown in Fig. 12, where the states x̂i represent the charges
in the capacitors and x̂i+3 denote the fluxes in the inductors, for
i = 1, 2, 3.

VI. CONCLUSION

In this article, we have provided sufficient conditions to
preserve the PH structure for reduced-order models obtained
via generalized and extended balanced truncation of CTLTI PH
systems. Moreover, we have shown how to exploit the degrees of
freedom in extended balancing to obtain a lower error bound than
the one obtained via generalized balancing. Additionally, we
have illustrated with an example that more particular structures,
such as physical ones, can be preserved via extended balanced
truncation.
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