17 research outputs found

    Fast 3D Extended Target Tracking using NURBS Surfaces

    Full text link
    This paper proposes fast and novel methods to jointly estimate the target's unknown 3D shape and dynamics. Measurements are noisy and sparsely distributed 3D points from a light detection and ranging (LiDAR) sensor. The methods utilize non-uniform rational B-splines (NURBS) surfaces to approximate the target's shape. One method estimates Cartesian scaling parameters of a NURBS surface, whereas the second method estimates the corresponding NURBS weights, too. Major advantages are the capability of estimating a fully 3D shape as well as the fast processing time. Real-world evaluations with a static and dynamic vehicle show promising results compared to state-of-the-art 3D extended target tracking algorithms.Comment: In Proceedings of IEEE Intelligent Transportation Systems Conference (ITSC), 201

    Maneuvering Star-Convex Extended Target Tracking Based on Modified Expected- Mode Augmentation Algorithm

    Get PDF
    In utilizing a variable-structure multiple-model (VSMM) algorithm for kinematic state estimation, the core step is the model set design. This study aims to refine the existing expected-mode augmentation (EMA) algorithm, a method of model set design. First, the OTSU algorithm is employed to determine an adaptive threshold, which in turn allows for a reasonable partition of the basic model set. Next, a subset of possible models is preserved, reactivating models adjacent to the one with the highest prediction probability, eliminating improbable models, and yielding an augmented expected mode. Additionally, the study leverages the translation properties of radial functions and inverse trigonometric function formulas to derive a maneuvering model for star- convex extended targets under uniformly accelerated conditions. In order to assess the effectiveness of the proposed algorithm and the validity of the established maneuvering model, simulation experiments were carried out in both fixed and random scenarios. The proposed algorithm demonstrates improved performance when compared to the interactive multiple-model algorithm and the unmodified EMA algorithm

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure
    corecore