99 research outputs found

    Generalization of matching extensions in graphs (II)

    Full text link
    Proposed as a general framework, Liu and Yu(Discrete Math. 231 (2001) 311-320) introduced (n,k,d)(n,k,d)-graphs to unify the concepts of deficiency of matchings, nn-factor-criticality and kk-extendability. Let GG be a graph and let n,kn,k and dd be non-negative integers such that n+2k+d≤∣V(G)∣−2n+2k+d\leq |V(G)|-2 and ∣V(G)∣−n−d|V(G)|-n-d is even. If when deleting any nn vertices from GG, the remaining subgraph HH of GG contains a kk-matching and each such kk- matching can be extended to a defect-dd matching in HH, then GG is called an (n,k,d)(n,k,d)-graph. In \cite{Liu}, the recursive relations for distinct parameters n,kn, k and dd were presented and the impact of adding or deleting an edge also was discussed for the case d=0d = 0. In this paper, we continue the study begun in \cite{Liu} and obtain new recursive results for (n,k,d)(n,k,d)-graphs in the general case d≥0d \geq0.Comment: 12 page

    4-Factor-criticality of vertex-transitive graphs

    Full text link
    A graph of order nn is pp-factor-critical, where pp is an integer of the same parity as nn, if the removal of any set of pp vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertex-transitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graphs of even order and degree at least 5 is 2-extendable.Comment: 34 pages, 3 figure

    3-Factor-criticality of vertex-transitive graphs

    Full text link
    A graph of order nn is pp-factor-critical, where pp is an integer of the same parity as nn, if the removal of any set of pp vertices results in a graph with a perfect matching. 1-Factor-critical graphs and 2-factor-critical graphs are factor-critical graphs and bicritical graphs, respectively. It is well known that every connected vertex-transitive graph of odd order is factor-critical and every connected non-bipartite vertex-transitive graph of even order is bicritical. In this paper, we show that a simple connected vertex-transitive graph of odd order at least 5 is 3-factor-critical if and only if it is not a cycle.Comment: 15 pages, 3 figure

    A closure concept in factor-critical graphs

    Get PDF
    AbstractA graph G is called n-factor-critical if the removal of every set of n vertices results in a~graph with a~1-factor. We prove the following theorem: Let G be a~graph and let x be a~locally n-connected vertex. Let {u,v} be a~pair of vertices in V(G)−{x} such that uv∉E(G), x∈NG(u)∩NG(v), and NG(x)⊂NG(u)∪NG(v)∪{u,v}. Then G is n-factor-critical if and only if G+uv is n-factor-critical

    NEFI: Network Extraction From Images

    Full text link
    Networks and network-like structures are amongst the central building blocks of many technological and biological systems. Given a mathematical graph representation of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to graphs describing large scale networks such as social networks, protein-interaction networks, etc. In these applications, graph acquisition, i.e., the extraction of a mathematical graph from a network, is relatively simple. However, for many network-like structures, e.g. leaf venations, slime molds and mud cracks, data collection relies on images where graph extraction requires domain-specific solutions or even manual. Here we introduce Network Extraction From Images, NEFI, a software tool that automatically extracts accurate graphs from images of a wide range of networks originating in various domains. While there is previous work on graph extraction from images, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners from many disciplines to easily extract graph representations from images by supplying flexible tools from image processing, computer vision and graph theory bundled in a convenient package. Thus, NEFI constitutes a scalable alternative to tedious and error-prone manual graph extraction and special purpose tools. We anticipate NEFI to enable the collection of larger datasets by reducing the time spent on graph extraction. The analysis of these new datasets may open up the possibility to gain new insights into the structure and function of various types of networks. NEFI is open source and available http://nefi.mpi-inf.mpg.de
    • …
    corecore