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Abstract

We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary
1-factor of G. If G \ {a; b} is k-extendable for each ab ∈ F , then G is k-extendable. (2) Let G
be a graph and let M be an arbitrary maximal matching of G. If G \ {a; b} is k-factor-critical
for each ab ∈ M , then G is k-factor-critical. c© 2000 Elsevier Science B.V. All rights reserved.
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We consider only �nite simple graphs and follow Chartrand and Lesniak [1] for
general terminology and notation. Let G be a graph with vertex set V (G) and edge set
E(G). For A⊂V (G), G[A] denotes the subgraph of G induced by A and G \ A is the
subgraph of G induced by V (G) \ A. We often identify G[A] with A. Further, let H
be a subgraph of G. For M ⊂E(H), He[M ] denotes the subgraph of H induced by M .
If A and B are disjoint subsets of V (G), then E(A; B) denotes the set of edges with
one end in A and the other in B. Further, if F is a subgraph of G and v is a vertex
in G, we may write simply G[F] instead of G[V (F)]; G \F instead of G \V (F), and
E(v; F) instead of E({v}; V (F)). The set of endvertices of an edge e is denoted by
V (e) and for a matching M , let Ve(M) =

⋃
e∈M V (e).

Let k¿0 and p¿ 0 be integers with k6p−1 and G a graph with 2p vertices having
a 1-factor. Then G is said to be k-extendable (k-ext in brief) if every matching of
size k in G can be extended to a 1-factor. A graph G of order p is k-factor-critical
(k-fc in brief), where k is an integer of the same parity as p with 06k6p, if G \X
has a 1-factor (a perfect matching) for any set X of k vertices of G. In particular, G
is 0-factor-critical or 0-extendable if and only if G has a 1-factor.
In this note, we will prove the following theorems.
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Theorem 1. Let G be a graph with a 1-factor and let F be an arbitrary ( �xed)
1-factor of G. If G \ V (e) is k-extendable for each e ∈ F; then G is k-extendable.

Theorem 2. Let G be a graph and let M be an arbitrary ( �xed) maximal matching
of G. If G \ V (e) is k-factor-critical for each e ∈ M; then G is k-factor-critical.

Theorems 1 and 2 are extensions of the following theorems, respectively.

Theorem 3 (Nishimura and Saito [7]). Let G be a graph with a 1-factor. If G \V (e)
is k-extendable for each e ∈ E(G); then G is k-extendable.

Theorem 4 (Favaron and Shi [5] and Nishimura [6]). Let G be a graph. If G \ V (e)
is k-factor-critical for each e ∈ E(G); then G is k-factor-critical.

In actuality, each of the papers [5–7] contains stronger results than Theorems 3
and 4.
We use several lemmas for the proofs of Theorems 1 and 2. In particular, our

theorems heavily depends on Lemma 5.

Lemma 5 (Tutte [10]). (I) A graph G has a 1-factor i� o(G\S)6|S| for all S ⊂V (G)
and
(II) o(G \S)−|S| ≡ 0 (mod 2) if G has even order; where o(G) denotes the number

of odd components of G.

Lemma 6 (Plummer [8]). Let k be a positive integer and let G be a k-extendable
graph. Then G is (k − 1)-extendable. Further; if G is connected; then G is (k + 1)-
connected.

Lemma 7. Let G be a graph of order n¿k + 4 and let e and f be two independent
edges of G. If G \ V (e) and G \ V (f) are k-connected; then G is k-connected.

Proof. Let G be a graph satisfying the conditions of the lemma. Suppose that G is not
k-connected. Let S be a cutset of G with |S|6k−1 and let e1 =a1b1 and e2 =a2b2 be
two independent edges of G. Since G\V (ei) is k-connected, clearly S is not a cutset of
G \V (ei) (i=1; 2). If S ⊂G \V (ei), then G \ (V (ei)∪S) and ei must be components of
G\S. Therefore, E(V (ei); G\(V (ei)∪S))=∅. But since G\V (e3−i) is also k-connected,
we have |NG\(V (ei)∪V (e3−i))(V (ei))|¿k, where NG(S) denotes the neighborhood of S of
V (G). Further, since |S|6k−1; E(V (ei); G\(V (ei)∪S)) 6= ∅, which is a contradiction.
Hence S 6⊂V (G) \ V (ei) (i = 1; 2). Without loss of generality, we may assume that
{a1; a2}⊂ S. Now let D1 and D2 be two components of G\S. Of course, E(D1; D2)=∅.
If D1⊂G \ V (e1), then we have E(D1; G \ [V (e1) ∪D1])⊂E(D1; S \ {a1}). Hence D1
is a component of G \ [V (e1) ∪ (S \ {a1})]. If [G \ V (e1)] \ [S \ {a1}] \ D1 6= ∅, then
S \ {a1} is a cutset in G \ V (e1) of order at most k − 2, which is a contradiction.
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Therefore, [G \ [V (e1)] \ [S \ {a1}] \D1 = ∅, i.e., G \V (e1) =G[(S \ {a1})∪D1]. Then
D2 must be b1(=G[{b1}]).
On the other hand, since dG\V (e2)(b1)¿K and |E(b1; S)]6k−1, we have dD1 (b1)¿1.

This implies E(D1; D2) 6= ∅, which is a contrdiction. Therefore, D1 6⊂G \ V (e1). The
same argument gives D1 6⊂G \ V (e2). Thus, it must hold that {b1; b2}⊂D1. However,
if V (D2) 6= ∅, then D2⊂G \ V (e1) or D2⊂G \ V (e2). Again similar arguments as in
the above lead a contradiction, which completes the proof. .

Proof of Theorem 1. Let G be a graph satisfying the condition of the theorem. If
k=0, then clearly the theorem holds. We may assume k ¿ 0. Suppose that there exists
a 1-factor F of G such that G \V (e) is k-ext for each e ∈ F but G is not k-ext. Then,
for some matching M with size k; G \R has no 1-factor, where R=G[Ve(M)]. Further,
by Lemma 5, we have o((G\R)\S)¿|S|+2 for some vertex subset S ⊂V (G)\R. Our
purpose is to show G\V (f) is not k-ext for some f ∈ F . Let W=(G\R)\S:=G\R\S.

Claim 1 (F ⊂E(R;G \ R) ∪ E(R) and F ∩M = ∅).
Suppose that an edge e=ab is in F ∩E(G \R). If e ∈ E(S); then [G \V (e)]\R\ [S \

{a; b}] has all odd components of W=G\R\S; i.e.; we have o([G\V (e)]\R\[S{a; b}])=
o(W )¿|S| + 2. If e ∈ E(W ); then we have o([G \ V (e)] \ R \ S)¿o(W )¿|S| + 2. If
e ∈ E(S;W ); then for a ∈ S and b ∈ W; we have o([G \V (e)]\R\ [S \{a}])¿o(W )−
1¿|S|+ 1. Each of them means that G \ V (e) is not k-ext; a contradition. Therefore;
F ⊂E(R;G \ R) ∪ E(R).
Further; if e ∈ F ∩M; then we have o([G \ V (e)] \ [R \ V (e)] \ S) = o(W )¿|S|+ 2;

which means G \ V (e) is not (k − 1)-ext; i.e.; G \ V (e) is not k-ext by Lemma 6; a
contradiction.

By Claim 1, we clearly have |G \ R|6|R|.
Claim 2 (All components of Re[F ∪M ] are alternating paths).
By Claim 1; since F ∩ M = ∅; obviously Re[F ∪ M ] induces only even cycles or

alternating paths. Note that such an alternating path’s endedges are in M.
Suppose that Re[F ∪M ] contains an even cycle D= a1a2m : : : a2m−1a2ma1. Let M1 =

{a2ja2j+1 | j=1; 2; : : : ; m}⊂M; where a2m+1=a1; and M2={a2j−1a2j | j=1; 2; : : : ; m}⊂F .
Note that if G has no 1-factor containing M; then since R = G[Ve(M)] = G[Ve((M \
M1)∪M2)] and |M |= |(M \M1)∪M2|; G also has no 1-factor containing (M \M1)∪M2.
By the hypothesis and Lemma 6; G \ {a1; a2} is (k − 1)-ext. But since [G \ {a1; a2}]\
[Ve((M \M1)∪ (M2 \ {a1a2}))]=G \R has no 1-factor; G \ {a1; a2} is not (k − 1)-ext;
a contradiction. Thus; Claim 2 holds.

In the rest of proof, a1Aa2 denotes the component, i.e., alternating path, in Re[F∪M ]
with the endvertices a1 and a2.

Claim 3 (S = ∅ and W = G \ R has no even component).
Suppose S 6= ∅. Let e=ab ∈ F∩E(S; R); a ∈ S and b ∈ R. Since b is in R, for some

alternating path bAc in Re[F∪M ]; there exists the vertex d ∈ V (G)\R such that cd ∈ F .
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Let M ′=M ∪ (F ∩bAc)∩{cd}\ (M ∩bAc). Then note that R∪{d}\{b}=Ve(M ′) and
|M ′|=k. If d ∈ S; then we have o([G\V (e)]\[R∪{d}\{b}]\[S\{a; d}])=o(W )¿|S|+2;
which means G\V (e) is not k-ext; a contradiction. When d ∈ W; even if d is in an odd
component of W; then we have o([G\V (e)]\[R∪{d}\{b}]\[S\{a}])¿o(W )−1¿|S|+1.
Again we have a contradiction. Thus; S = ∅. Similarly; we can easily prove that W
does not have an even component.

Claim 4 (o(G \ R) = 2).
By Claim 3; all components of G \ R are odd. Further; by Lemma 5; the number

of odd components is even. Let {C1; C2; : : : ; Cm} be the set of odd components of
G \ R. Suppose m = o(G \ R)¿4. Let e = ab ∈ F ∩ E(C1; R); a ∈ C1 and b ∈ R.
Then; there exists an alternating path bAc in R and cd ∈ F with d ∈ V (G) \ R. Let
M ′ =M ∪ (F ∩ bAc) ∪ {cd} \ (M ∩ bAc). Then note that R ∪ {d} \ {b}= Ve(M ′) and
|M ′|= k. When d ∈ W (even when d ∈ W \V (C1)); we have o([G \V (e)] \ [R∪{d} \
{b}])¿o(G \ R)− 2¿2; which implies G \ V (e) is not k-ext; a contradiction.

Thus, {C1; C2} is the set of all components of G \ R. Notice that the following
observation holds:
(?) Let uA′v be a subpath with odd length of uAw in Re[F ∪M ] and let x and y

be two distinct vertices of G \ R such that ux ∈ F and vy ∈ E(G) (clearly if v = w;
then we can take y ∈ V (G) \ R with vy ∈ F; and if v 6= w; then vy ∈ E(G) \ F).
Then; M ′=M ∪ (F ∩ uA′v)∪{vy} \ (M ∩ uA′v) is a matching with size k. If x and y
are in the same component C1 or C2; say C1; then since C2 is also an odd component
of [G \ {u; x}] \ [R∪ {y} \ {u}] (=[G \ {u; x}] \ Ve(M ′)); [G \ {u; x}] \ [R∪ {y} \ {u}]
has no 1-factor; i.e.; G \ {u; x} is not k-ext.
Since both components C1 and C2 have odd order, if |C1|¿ |C2|, then |C1|¿|C2|+2.

Therefore, by Claim 1, we can easily �nd four vertices x; y ∈ C1 and u; v∈R satisfying
the situation of (?), a contradiction. We may assume that |C1|= |C2|= h and that h is
odd. Then |V (G)|= |R|+ |C1 ∪ C2|= 2k + 2h. Since G \ V (e) is k-ext, |V (G)|= |G \
V (e)|+ |V (e)|¿(2k + 2) + 2. Hence, we may assume h¿3. Further, we may assume
that each of alternating paths in Ge[F ∪M ] satis�es one endvertex in V (C1) and the
other in V (C2).
Let V (C1) = {x1; x2; : : : ; xh}; V (C2) = {y1; y2; : : : ; yh}. We may assume that ui and

vi are endvertices of an alternating path Pi in Re[F ∪ M ], i.e., Re[F ∪ M ] = P1 ∪
P2 ∪ · · · ∪ Ph, where Pi = uiAvi. And let xiui ∈ F and yivi ∈ F(i = 1; 2; : : : ; h). Fur-
thermore, let U = {z||E(uiA′z)| ≡ 0 (mod 2); i = 1; 2; : : : ; h} and V = {z||E(uiA′z)| ≡
1 (mod 2); i=1; 2; : : : ; h}, where uiA′z denotes the subpath of uiAvi with endvertices ui
and z. Of course, |U | = |V | = k; {u1; u2; : : : ; uh}⊂U; {v1; v2; : : : ; vh}⊂V , and Ge[F ∪
M ] = ∪hi=1xiuiAviyi.
Now, we have that E(xi; Pj ∩ V ) = ∅ for i 6= j. Because if v ∈ Pj ∩ V is a vertex

satisfying xiv ∈ E(G), then four vertices xj; xi; uj, and v are playing the roles x; y; u, and
v in (?), respectively. Thus, E(C1\{xi}; Pi∩V )=∅ for each i. Similarly, E(yi; Pj∩U )=∅
for i 6= j.
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Let

M ′ =M ∪ (F ∩ u1Av1) ∪ (F ∩ u2Av2)
∪ {x1u1; x2u2} \ ((M ∩ u1Av1) ∪ (M ∩ u2Av2)):

Then M ′ is a matching with |M ′|= k in G \ {v1; y1}. And note that v1y1 ∈ F . By the
previous paragraph, E(v2; C1\{x2})=∅ and hence E(C1\{x1; x2}; (C2∪{v2})\{y1})=∅.
Since |C1 \ {x1; x2}| ≡ |(C2 ∪ {v2}) \ {y1}| ≡ 1 (mod 2); (G \ {v1; y1}) \ Ve(M ′) has at
least two odd components, and hence M ′ cannot extend to a 1-factor in G \ {v1; y1}.
This contradicts the assumption, and the theorem follows.

Next, we will give a proof of Theorem 2. The proof technique is very similar to the
one of Theorem 1. But this proof is much easier than that of Theorem 1.

Lemma 8 (Favaron [4]). (I) If G is k-factor-critical of order p¿k; then G is
k-connected; and
(II) for k¿2; any k -factor-critical graph of order p¿k is (k − 2)-factor-critical.

Proof of Theorem 2. Let G be a graph satisfying the condition of the theorem. If
k = 0, then clearly the theorem holds. We may assume k ¿ 0. By the hypothesis and
Lemma 8(I), since |G \ V (e)|¿k + 2, we have |V (G)| = |G \ V (e)| + |V (e)|¿k + 4.
Further, we may assume the size of maximal matching is at least 2. By Lemma 7, G
is connected.
Suppose that there exists a maximal matching M of G such that G \ V (e) is k-fc

for each e ∈ M but G is not k-fc. Then, for some vertex subset R of order k; G \ R
has no 1-factor. Further, by Lemma 5, we have o(G \ R \ S)¿|S|+ 2 for some vertex
subset S ⊂V (G) \ R. Our purpose is to show G \ V (f) is not k-fc for some f ∈ M .
Let W = G \ R \ S.
Claim 1 (M ⊂E(R;G \ R)).
If e ∈ M ∩ E(R); then we have o([G \ V (e)] \ [R \ V (e)] \ S) = o(W )¿|S| + 2;

which means G \ V (e) is not (k − 2)-fc; i.e.; G \ V (e) is not k-fc by Lemma 9(II); a
contradiction.
If there exists an edge e ∈ M ∩ E(G \ R); then we can obtain G \ V (e) is not k-fc

by the same argument as in the proof of Claim 1 of Theorem 1; a contradiction.

Claim 2 (S = ∅ and W = G \ R has no even component).
Suppose S 6= ∅. Since M 6= ∅; some edge e = ab ∈ M satis�es e∈E(S; R) or

e∈E(W;R). Let a ∈ S ∪ W and b ∈ R. If e ∈ E(S; R); then for a vertex c ∈ W; we
have o([G \ V (e)] \ (R ∪ {c} \ {b}) \ (S \ {a}))¿o(W ) − 1¿|S| + 1; which implies
G \ V (e) is not k-fc; a contradiction. If e ∈ E(W;R); then for a vertex d ∈ S; we have
o([G \ V (e)] \ (R ∪ {d} \ {b}) \ (S \ {d}))¿o(W ) − 1¿|S| + 1. Again; we have a
contradiction. Thus; we have S = ∅.
Suppose that W has an even component D. By the connectedness of G and the

maximality of M; there exists an edge e=ab ∈ M∩E(D; R). Let a ∈ D and b ∈ R. Then;
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since |D|¿2; for a vertex c ∈ D\{a}; [G\V (e)]\(R∪{c}\{b}) has all odd components
of G \ R; i.e.; we have o([G \ V (e)] \ (R ∪ {c} \ {b}))¿o(G \ R)¿2; a contradiction.

Claim 3 (o(G \ R) = 2).
Let {C1; C2; : : : ; Cm} be the set of odd components of G \ R; where m = o(G \ R).

Suppose m¿4 since m is even. Without loss of generality; we may assume e = ab ∈
E(C1; R)∩M . Let a ∈ C1; b ∈ R and c ∈ V (C2). Then [G \V (e)] \ [R∪{c} \ {b}] has
odd components C3; : : : ; Cm of G \ R; i.e.; o([G \ V (e)] \ [R ∪ {c} \ {b}])¿m− 2¿2;
which implies G \ V (e) is not k-fc; a contradiction.

Since |V (G)|¿k + 4 and |R| = k, we have |C1 ∪ C2|¿4. Further, since C1 and
C2 are odd components, |C1|¿3 or |C2|¿3. We may assume |C1|¿3. By Claim 1,
M ⊂E(R;G \ R), the maximality of M , and the connectedness of G, there exists an
edge e ∈ M ∩ E(C1; R). Let e = ab; a ∈ C1; b ∈ R. Then, we can take a vertex
c ∈ C1 \{a} so that o([G \V (e)]\ (R∪{c}\{b}))¿o(G \R)=2. This shows G \V (e)
is not k-fc, which completes the proof of Theorem 2.

Remark. In [9], Saito has proved the following ‘similar type’ result for the existence
of a k-(regular) factor. This result gives an extension of a result in [2] which is similar
to Theorem 3 or 4. (Recently, Enomoto and Tokuda [3] gave a further extension of
Saito’s result.)

Theorem 9. Let G be a graph with a 1-factor and let F be an arbitrary ( �xed)
1-facror of G. If G \ V (e) has a k-factor for each e ∈ F; then G has a k-factor.

Our results are along this line of study for ‘extendability’ and ‘factor-criticality’.
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