11,033 research outputs found

    Consensus State Gram Matrix Estimation for Stochastic Switching Networks from Spectral Distribution Moments

    Full text link
    Reaching distributed average consensus quickly and accurately over a network through iterative dynamics represents an important task in numerous distributed applications. Suitably designed filters applied to the state values can significantly improve the convergence rate. For constant networks, these filters can be viewed in terms of graph signal processing as polynomials in a single matrix, the consensus iteration matrix, with filter response evaluated at its eigenvalues. For random, time-varying networks, filter design becomes more complicated, involving eigendecompositions of sums and products of random, time-varying iteration matrices. This paper focuses on deriving an estimate for the Gram matrix of error in the state vectors over a filtering window for large-scale, stationary, switching random networks. The result depends on the moments of the empirical spectral distribution, which can be estimated through Monte-Carlo simulation. This work then defines a quadratic objective function to minimize the expected consensus estimate error norm. Simulation results provide support for the approximation.Comment: 52nd Asilomar Conference on Signals, Systems, and Computers (Asilomar 2017

    Likelihood Analysis of Power Spectra and Generalized Moment Problems

    Full text link
    We develop an approach to spectral estimation that has been advocated by Ferrante, Masiero and Pavon and, in the context of the scalar-valued covariance extension problem, by Enqvist and Karlsson. The aim is to determine the power spectrum that is consistent with given moments and minimizes the relative entropy between the probability law of the underlying Gaussian stochastic process to that of a prior. The approach is analogous to the framework of earlier work by Byrnes, Georgiou and Lindquist and can also be viewed as a generalization of the classical work by Burg and Jaynes on the maximum entropy method. In the present paper we present a new fast algorithm in the general case (i.e., for general Gaussian priors) and show that for priors with a specific structure the solution can be given in closed form.Comment: 17 pages, 4 figure

    A mathematical proof of the existence of trends in financial time series

    Get PDF
    We are settling a longstanding quarrel in quantitative finance by proving the existence of trends in financial time series thanks to a theorem due to P. Cartier and Y. Perrin, which is expressed in the language of nonstandard analysis (Integration over finite sets, F. & M. Diener (Eds): Nonstandard Analysis in Practice, Springer, 1995, pp. 195--204). Those trends, which might coexist with some altered random walk paradigm and efficient market hypothesis, seem nevertheless difficult to reconcile with the celebrated Black-Scholes model. They are estimated via recent techniques stemming from control and signal theory. Several quite convincing computer simulations on the forecast of various financial quantities are depicted. We conclude by discussing the r\^ole of probability theory
    • …
    corecore