890 research outputs found

    TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators

    Full text link
    Over the past few years, the explosion in sparse tensor algebra workloads has led to a corresponding rise in domain-specific accelerators to service them. Due to the irregularity present in sparse tensors, these accelerators employ a wide variety of novel solutions to achieve good performance. At the same time, prior work on design-flexible sparse accelerator modeling does not express this full range of design features, making it difficult to understand the impact of each design choice and compare or extend the state-of-the-art. To address this, we propose TeAAL: a language and compiler for the concise and precise specification and evaluation of sparse tensor algebra architectures. We use TeAAL to represent and evaluate four disparate state-of-the-art accelerators--ExTensor, Gamma, OuterSPACE, and SIGMA--and verify that it reproduces their performance with high accuracy. Finally, we demonstrate the potential of TeAAL as a tool for designing new accelerators by showing how it can be used to speed up Graphicionado--by 38Ă—38\times on BFS and 4.3Ă—4.3\times on SSSP.Comment: 14 pages, 12 figure

    Task-based Runtime Optimizations Towards High Performance Computing Applications

    Get PDF
    The last decades have witnessed a rapid improvement of computational capabilities in high-performance computing (HPC) platforms thanks to hardware technology scaling. HPC architectures benefit from mainstream advances on the hardware with many-core systems, deep hierarchical memory subsystem, non-uniform memory access, and an ever-increasing gap between computational power and memory bandwidth. This has necessitated continuous adaptations across the software stack to maintain high hardware utilization. In this HPC landscape of potentially million-way parallelism, task-based programming models associated with dynamic runtime systems are becoming more popular, which fosters developers’ productivity at extreme scale by abstracting the underlying hardware complexity. In this context, this dissertation highlights how a software bundle powered by a task-based programming model can address the heterogeneous workloads engendered by HPC applications., i.e., data redistribution, geospatial modeling and 3D unstructured mesh deformation here. Data redistribution aims to reshuffle data to optimize some objective for an algorithm, whose objective can be multi-dimensional, such as improving computational load balance or decreasing communication volume or cost, with the ultimate goal of increasing the efficiency and therefore reducing the time-to-solution for the algorithm. Geostatistical modeling, one of the prime motivating applications for exascale computing, is a technique for predicting desired quantities from geographically distributed data, based on statistical models and optimization of parameters. Meshing the deformable contour of moving 3D bodies is an expensive operation that can cause huge computational challenges in fluid-structure interaction (FSI) applications. Therefore, in this dissertation, Redistribute-PaRSEC, ExaGeoStat-PaRSEC and HiCMA-PaRSEC are proposed to efficiently tackle these HPC applications respectively at extreme scale, and they are evaluated on multiple HPC clusters, including AMD-based, Intel-based, Arm-based CPU systems and IBM-based multi-GPU system. This multidisciplinary work emphasizes the need for runtime systems to go beyond their primary responsibility of task scheduling on massively parallel hardware system for servicing the next-generation scientific applications

    Bridging Control-Centric and Data-Centric Optimization

    Full text link
    With the rise of specialized hardware and new programming languages, code optimization has shifted its focus towards promoting data locality. Most production-grade compilers adopt a control-centric mindset - instruction-driven optimization augmented with scalar-based dataflow - whereas other approaches provide domain-specific and general purpose data movement minimization, which can miss important control-flow optimizations. As the two representations are not commutable, users must choose one over the other. In this paper, we explore how both control- and data-centric approaches can work in tandem via the Multi-Level Intermediate Representation (MLIR) framework. Through a combination of an MLIR dialect and specialized passes, we recover parametric, symbolic dataflow that can be optimized within the DaCe framework. We combine the two views into a single pipeline, called DCIR, showing that it is strictly more powerful than either view. On several benchmarks and a real-world application in C, we show that our proposed pipeline consistently outperforms MLIR and automatically uncovers new optimization opportunities with no additional effort.Comment: CGO'2

    Full Stack Optimization of Transformer Inference: a Survey

    Full text link
    Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference
    • …
    corecore