6,872 research outputs found

    Average case polyhedral complexity of the maximum stable set problem

    Full text link
    We study the minimum number of constraints needed to formulate random instances of the maximum stable set problem via linear programs (LPs), in two distinct models. In the uniform model, the constraints of the LP are not allowed to depend on the input graph, which should be encoded solely in the objective function. There we prove a 2Ω(n/logn)2^{\Omega(n/ \log n)} lower bound with probability at least 122n1 - 2^{-2^n} for every LP that is exact for a randomly selected set of instances; each graph on at most n vertices being selected independently with probability p2(n/42)+np \geq 2^{-\binom{n/4}{2}+n}. In the non-uniform model, the constraints of the LP may depend on the input graph, but we allow weights on the vertices. The input graph is sampled according to the G(n, p) model. There we obtain upper and lower bounds holding with high probability for various ranges of p. We obtain a super-polynomial lower bound all the way from p=Ω(log6+ε/n)p = \Omega(\log^{6+\varepsilon} / n) to p=o(1/logn)p = o (1 / \log n). Our upper bound is close to this as there is only an essentially quadratic gap in the exponent, which currently also exists in the worst-case model. Finally, we state a conjecture that would close this gap, both in the average-case and worst-case models

    The matching polytope does not admit fully-polynomial size relaxation schemes

    Full text link
    The groundbreaking work of Rothvo{\ss} [arxiv:1311.2369] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the polyhedral inapproximability of the matching polytope: for fixed 0<ε<10 < \varepsilon < 1, every polyhedral (1+ε/n)(1 + \varepsilon / n)-approximation requires an exponential number of inequalities, where nn is the number of vertices. This is sharp given the well-known ρ\rho-approximation of size O((nρ/(ρ1)))O(\binom{n}{\rho/(\rho-1)}) provided by the odd-sets of size up to ρ/(ρ1)\rho/(\rho-1). Thus matching is the first problem in PP, whose natural linear encoding does not admit a fully polynomial-size relaxation scheme (the polyhedral equivalent of an FPTAS), which provides a sharp separation from the polynomial-size relaxation scheme obtained e.g., via constant-sized odd-sets mentioned above. Our approach reuses ideas from Rothvo{\ss} [arxiv:1311.2369], however the main lower bounding technique is different. While the original proof is based on the hyperplane separation bound (also called the rectangle corruption bound), we employ the information-theoretic notion of common information as introduced in Braun and Pokutta [http://eccc.hpi-web.de/report/2013/056/], which allows to analyze perturbations of slack matrices. It turns out that the high extension complexity for the matching polytope stem from the same source of hardness as for the correlation polytope: a direct sum structure.Comment: 21 pages, 3 figure

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Full text link
    In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations

    Fooling sets and rank

    Full text link
    An n×nn\times n matrix MM is called a \textit{fooling-set matrix of size nn} if its diagonal entries are nonzero and Mk,M,k=0M_{k,\ell} M_{\ell,k} = 0 for every kk\ne \ell. Dietzfelbinger, Hromkovi{\v{c}}, and Schnitger (1996) showed that n \le (\mbox{rk} M)^2, regardless of over which field the rank is computed, and asked whether the exponent on \mbox{rk} M can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size n = \binom{\mbox{rk} M+1}{2}. In nonzero characteristic, we construct an infinite family of matrices with n= (1+o(1))(\mbox{rk} M)^2.Comment: 10 pages. Now resolves the open problem also in characteristic

    Small Extended Formulations for Cyclic Polytopes

    Full text link
    We provide an extended formulation of size O(log n)^{\lfloor d/2 \rfloor} for the cyclic polytope with dimension d and n vertices (i,i^2,\ldots,i^d), i in [n]. First, we find an extended formulation of size log(n) for d= 2. Then, we use this as base case to construct small-rank nonnegative factorizations of the slack matrices of higher-dimensional cyclic polytopes, by iterated tensor products. Through Yannakakis's factorization theorem, these factorizations yield small-size extended formulations for cyclic polytopes of dimension d>2
    corecore