157 research outputs found

    L.U.St: a tool for approximated maximum likelihood supertree reconstruction

    Get PDF
    BACKGROUND: Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. RESULTS: Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). CONCLUSION: This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. Availability: bitBucket page - https://[email protected]/afro-juju/l.u.st.git. Contact: [email protected]

    Hedging our bets: the expected contribution of species to future phylogenetic diversity

    Full text link
    If predictions for species extinctions hold, then the `tree of life' today may be quite different to that in (say) 100 years. We describe a technique to quantify how much each species is likely to contribute to future biodiversity, as measured by its expected contribution to phylogenetic diversity. Our approach considers all possible scenarios for the set of species that will be extant at some future time, and weights them according to their likelihood under an independent (but not identical) distribution on species extinctions. Although the number of extinction scenarios can typically be very large, we show that there is a simple algorithm that will quickly compute this index. The method is implemented and applied to the prosimian primates as a test case, and the associated species ranking is compared to a related measure (the `Shapley index'). We describe indices for rooted and unrooted trees, and a modification that also includes the focal taxon's probability of extinction, making it directly comparable to some new conservation metrics.Comment: 19 pages, 2 figure

    Supertree construction by matrix representation with flip

    Get PDF

    Computing the distribution of a tree metric

    Get PDF
    The Robinson-Foulds (RF) distance is by far the most widely used measure of dissimilarity between trees. Although the distribution of these distances has been investigated for twenty years, an algorithm that is explicitly polynomial time has yet to be described for computing this distribution (which is also the dis- tribution of trees around a given tree under the popular Robinson-Foulds metric). In this paper we derive a polynomial-time algorithm for this distribution. We show how the distribution can be approximated by a Poisson distribution determined by the proportion of leaves that lie in ā€˜cherriesā€™ of the given tree. We also describe how our results can be used to derive normalization constants that are required in a recently-proposed maximum likelihood approach to supertree construction
    • ā€¦
    corecore