6 research outputs found

    Topological analysis of longitudinal networks

    Get PDF
    Longitudinal networks evolve over time through the addition or deletion of nodes and edges. A longitudinal network can be viewed as a single static network that aggregates all edges observed over some time period (i.e., structure of network is fixed), or as a series of static networks observed in different point of time over the entire network observation period (i.e., structure of network is changing over time). By following a topological approach (i.e., static topology and dynamic topology), this paper first proposes a framework to analyze longitudinal networks. In static topology, SNA methods are applied to the aggregated network of entire observation period. Smaller segments of network data (i.e., short-interval network) that are accumulated in less time compared to the entire network observation period are used in dynamic topology for analysis purpose. Based on this framework, this study then conducts a topological analysis of email communication networks of an organization during its different operational conditions to explore changes in the behavior of actor-level dynamics. © 2012 IEEE.published_or_final_versio

    Network Effects on Scientific Collaborations

    Get PDF
    Background: The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Methodology/Principal Findings: Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Conclusions/Significance: Authors' network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations. © 2013 Uddin et al.published_or_final_versio

    A study of physician collaborations through social network and exponential random graph

    Get PDF
    Background: Physician collaboration, which evolves among physicians during the course of providing healthcare services to hospitalised patients, has been seen crucial to effective patient outcomes in healthcare organisations and hospitals. This study aims to explore physician collaborations using measures of social network analysis (SNA) and exponential random graph (ERG) model. Methods. Based on the underlying assumption that collaborations evolve among physicians when they visit a common hospitalised patient, this study first proposes an approach to map collaboration network among physicians from the details of their visits to patients. This paper terms this network as physician collaboration network (PCN). Second, SNA measures of degree centralisation, betweenness centralisation and density are used to examine the impact of SNA measures on hospitalisation cost and readmission rate. As a control variable, the impact of patient age on the relation between network measures (i.e. degree centralisation, betweenness centralisation and density) and hospital outcome variables (i.e. hospitalisation cost and readmission rate) are also explored. Finally, ERG models are developed to identify micro-level structural properties of (i) high-cost versus low-cost PCN; and (ii) high-readmission rate versus low-readmission rate PCN. An electronic health insurance claim dataset of a very large Australian health insurance organisation is utilised to construct and explore PCN in this study. Results: It is revealed that the density of PCN is positively correlated with hospitalisation cost and readmission rate. In contrast, betweenness centralisation is found negatively correlated with hospitalisation cost and readmission rate. Degree centralisation shows a negative correlation with readmission rate, but does not show any correlation with hospitalisation cost. Patient age does not have any impact for the relation of SNA measures with hospitalisation cost and hospital readmission rate. The 2-star parameter of ERG model has significant impact on hospitalisation cost. Furthermore, it is found that alternative-k-star and alternative-k-two-path parameters of ERG model have impact on readmission rate. Conclusions: Collaboration structures among physicians affect hospitalisation cost and hospital readmission rate. The implications of the findings of this study in terms of their potentiality in developing guidelines to improve the performance of collaborative environments among healthcare professionals within healthcare organisations are discussed in this paper. © 2013 Uddin et al.; licensee BioMed Central Ltd.published_or_final_versio

    The impact of study load on the dynamics of longitudinal email communications among students

    Get PDF
    With the advent of information technology, emails have gained wide acceptability among students as an asynchronous communication tool. According to the current pedagogy literature the overall trend of the use of email communication by university students has been increasing significantly since its inception, despite the rapid growth of the popularity and acceptability of other social mediums (e.g. Mobile phone and Facebook). In this study, we explore a longitudinal email communication network, which evolved under an increasing study load among 38 students throughout a university semester, using measures of social network analysis (SNA) and exponential random graph (ERG) models. This longitudinal network was divided into three waves, where each wave represents the portion of the complete longitudinal network that evolves between two consecutive observations. An increased study load was imposed through the assessment components of the course. SNA measures of degree centrality (i.e. the activity of an actor or actor popularity), betweenness centrality (i.e. the capacity to control the flow of information in a network), closeness centrality (i.e. reachable to other nodes) and reciprocity (i.e. tendency to make reciprocal links) are considered to explore this longitudinal network. ERG models are probabilistic models that are presented by locally determined explanatory variables and can effectively identify structural properties of networks. From the analysis of this email communication network, we notice that students’ network positions and behaviours change with the changes in their study load. In particular, we find that (i) students make an increased number of email communications with the in-crease of study load; (ii) the email communication network become sparse with the increase of study load; and (iii) the 2-star parameter (a subset of three nodes in which one node is connected to each of the other two nodes) and the triangle parameter (a subset of three nodes in which each node is connected to the other two nodes) can effectively explain the formation of network in wave3; whereas, the 3-star parameter (a subset of four nodes in which one node is connected to each of other three nodes) can effectively explain the formation of network in wave1 and wave2. Interpretations of these findings for the monitoring of student behaviour in online learning environments, as well as the implications for the design of assessment and the use of asynchronous tools are discussed in this paper

    Exponential random graph modeling of communication networks to understand organizational crisis

    No full text
    In recent social network studies, exponential random graph models have been used comprehensively to model global social network structure as a function of their local features. In this study, we describe the exponential random graph models and demonstrate its use in modeling the changing communication network structure at Enron Corporation during the period of its disintegration. We illustrate the modeling on communication networks and provide a new way of classifying networks and their performance based on the occurrence of their local features. Among several micro-level structures of exponential random graph models, we found significant variation in the appearance of A2P (Alternating k-two-paths) network structure in the communication network during crisis period and non-crisis period. This finding could also be used in analyzing communication networks of dynamic project groups and their adaptation process during crisis which could lead to an improved understanding how communications network evolve and adapt during crisis. © 2011 ACM.link_to_subscribed_fulltex
    corecore