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Abstract 
Longitudinal networks evolve over time through the 

addition or deletion of nodes and edges. A longitudinal 
network can be viewed as a single static network that 
aggregates all edges observed over some time period 
(i.e., structure of network is fixed), or as a series of 
static networks observed in different point of time over 
the entire network observation period (i.e., structure of 
network is changing over time). By following a 
topological approach (i.e., static topology and dynamic 
topology), this paper first proposes a framework to 
analyze longitudinal networks. In static topology, SNA 
methods are applied to the aggregated network of 
entire observation period. Smaller segments of network 
data (i.e., short-interval network) that are accumulated 
in less time compared to the entire network observation 
period are used in dynamic topology for analysis 
purpose. Based on this framework, this study then 
conducts a topological analysis of email 
communication networks of an organization during its 
different operational conditions to explore changes in 
the behavior of actor-level dynamics. 

1. Introduction

 Researchers have been exploring longitudinal 
networks to understand the micro mechanisms in the 
process of network formation and development over 
time. The study of longitudinal networks has therefore 
been the subject of intense research interest in recent 
years. Most studies in current literature give emphasis 
to the holistic view of network for studying 
evolutionary dynamics of networks [1-5] while 
underestimating the importance of the node-level view 
of networks. Based on a topological framework, this 
paper posits an actor-level approach about how to 
analyze longitudinal networks. 

In the social science literature, the presence of 
methods for the analysis of longitudinal networks is 
noticed for quite some time. The dominant method for 
analyzing longitudinal networks includes Markov 
models and Multi-agent simulation models. Continuous 
time Markov chains for modelling longitudinal 
networks were proposed as early as 1977 by Holland 
and Leinhardt [6], which have been significantly 
improved later by many researchers [1, 4, 7-9]. For 

modelling longitudinal networks, exponential random 
graph and stochastic actor-oriented models are the two 
Markovian methods proposed by Robins et al. [8] and 
Snijders et al. [10]. In these two approaches of analysis, 
links are modeled as random variables that can be in 
different states (e.g., positive, negative, or neutral) at 
different time. The purpose is to examine which 
network effect fits the empirical data and better 
accounts for the observed structural changes. These two 
Markovian approaches to longitudinal network analysis 
are efficient to detect and describe network changes as 
well as to explain why these changes occur. However, 
they may have convergence issues in the presence of 
sufficiently large abrupt endogenous (i.e., structure 
based) and exogenous (i.e., attribute based) social 
changes. Moreover, these models have computational 
limitations for a very large social network data. In 
Multi-agent simulation model, members in a social 
network are often modeled and implemented as 
computer agents who have the abilities to behave and 
make decisions based on certain criteria. The collective 
behaviors’ of all members in a network will determine 
how the network evolves from one structure to another. 
Evolutionary models often use multi-agent simulation. 
Carley et al. [11] use multi-agent technology to 
simulate the evolution of covert networks such as 
terrorist groups. Moreover, using a multi-agent system 
called DYNET, they perform a “what-if” analysis to 
anticipate how a network adapts to environmental 
changes such as the removal of a central member [11,
12]. A simulation model can be a powerful tool for
predicting a network’s future. However it often 
oversimplifies the behavior and decision-making of 
humans, and may not be able to model the complex 
reality of social networks. Unlike these two models 
(i.e., Markov models and Multi-agent simulation 
model) and other available statistical methods (e.g., 
panel regression), this paper proposes an innovative 
approach to capture dynamics of longitudinal networks.  
 Study of the analysis of longitudinal networks is 
very important for a number of reasons. First, 
longitudinal studies are unique in their ability to 
provide useful data about individual change over time 
[13]. Second, they can provide more efficient 
estimators than cross-sectional designs with the same 
number and pattern of observations [13]. Third, this 
type of study allows the flexibility to shift the focus of 
the study whilst data is being collected [14]. In 
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longitudinal study, data is collected over time. 
Therefore, longitudinal analysis of previously collected 
data can be conducted while collecting the present data. 
Based on the output of this early analysis, the principal 
direction of the study could be changed, if required. 
Finally, longitudinal studies are able to separate aging 

effects (changes over time within individuals) from 

cohort effects (differences between subjects at 

baseline) [14].  
Using the methods and measures of social network 

analysis (SNA), a social network can be analyzed by 
either static topology, or dynamic topology, or a 
combination of both [15, 16]. In static topology, SNA 
methods are applied to aggregated network data that 
have been accumulated over the entire period of 
observation [16, 17]. On the flip side, SNA methods are 
employed to the smaller intervals of data collection 
period in order to study how network interactions 
change over time in dynamic topology [17, 18]. For 
instance, a dynamic topology could be a daily or 
weekly or even monthly network analysis of a 
university email communication networks that evolve 
over five years, while static topology considers only 
one network - the single aggregated network of five 
years. Figure 1 illustrates a schematic difference 
between these two types of SNA topologies. According 
to this figure, for static network analysis purpose SNA 
methods are applied to the aggregated network (i.e., the 
upper shaded network inside the square) at the end of 
day three. In contrast, SNA methods are applied to each 
day network for research analysis purposes in dynamic 
topology (i.e., the three lower shaded networks inside 
squares). There is no aggregated network considered for 
SNA in this topology.  

This research aims to develop a framework, which is 
based on topological analysis, for analyzing 
longitudinal networks. It further intends to provide a 
relevant example which could provide the evidence 

about the applicability and usefulness of this proposed 
framework. The following two questions motivate this 
study: 
(i) How the structural positions (which is measured 

using a common SNA measure) of different actors 
change over time in longitudinal networks? 

(ii) What are the impacts of the changes in structural 
positions of actors in short-interval networks on 
their positions in the aggregated network? 

 The synopsis of this paper is as follows. Section 2 
illustrates the research framework. A topological 
analysis of email communication network of a large 
organization is conducted, based on the proposed 
research framework, in section 3. This is followed by 
the discussion of this research in section 4. Finally, 
there is a conclusion and future research direction of 
this study in section 5. 

2. Research Framework 

In analyzing longitudinal networks, the involvement 
of individual actor is observed and analyzed in (i) all 
networks that evolve in shorter period of time (i.e., 
short-interval networks); and (ii) in the single 
aggregated network which aggregates all edges 
observed in all networks of (i). To capture dynamics of 
networks that emerge in shorter period, dynamic 
topology needs to be followed. On the other hand, static 
topology has to be carried out for the single aggregated 
network. For this reason, to capture dynamics of 
longitudinal networks both static and dynamic 
topological analyses of networks need to be carried out.
 This study develops, based on topological approach, 
a framework to capture dynamics of longitudinal 

Figure 2: Research framework for topological 
analysis of longitudinal social networks

No. 
AN

Day1 Day2 Day3 Time

Aggregated 
Network (AN)

Dynamic

Static+ + =

Time

+ + =

Apply Dynamic Topology to all short-
interval networks

Apply Static 
Topology to the 

aggregated network

Compare and contrast structural positions of actors 
(resulting from dynamic and static analysis) within a social 

network under study

t2 t3t1

Figure 1: Illustration of static and dynamic 
topology of social network analysis (SNA)
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networks. Figure 2 illustrates this framework. In this 
figure, dynamic topology is applied to short-interval 
networks observed at time t1, t2, and t3 (where t3>t2>t1)
in order to capture network dynamics of individual 
actor. The network positions of all actors are quantified, 
by using a measure of social network analysis (say 
degree centrality), in these three short-interval networks 
for conducting a comparative analysis of the structural 
positions of actors over time. This comparison enables 
to explore how an individual actor change its structural 
behaviour over time compared to the other actors within 
the network. Static topology is then used for the 
aggregated network, which is the accumulation of the 
three short-interval networks. In this topological 
analysis, the network positions of all actors in the 
aggregated network are explored using the same social 
network measure used in dynamic topology (i.e., degree 
centrality). Finally, structural positions of all actors in 
short-interval networks (from dynamic topology) are 
compared and contrast with their respective positions in 
the aggregated network (from static topology). As this 
comparative analysis considers both the pattern of the 
changes of structural behavior of actors in short-interval 
networks and their structural positions in the aggregated 
network, it will eventually lead to better understanding 
about the dynamics of the longitudinal network under 
study. 
 This topological framework could potentially be 
used to capture different features of actor-oriented 
dynamic behaviour (e.g., activity of actor, actor 
popularity, level of involvement, capacity to control the 
flow of information, and embeddedness of actors in a 
network) of longitudinal networks. This will create an 
innovative way to analyze networks that evolve over 
time. For example, an organizational communication 
network could be explored to understand staff 
collaboration dynamics both in the short-interval 
networks and in the aggregated network during 
different phases of the operational running of that 
organization. To give another example about the 
applicability of this framework, the role of individual 
actor could be identified in the evolution of any 
longitudinal network.  

3. Example: Application of the Proposed 
Research Framework 

 The proposed research framework, as illustrated in 
Figure 2, is exercised to capture the dynamics of a 
longitudinal email communication network of a large 
organization during its different operational conditions 
(i.e., ‘crisis’ and ‘normal’ period). In doing so, this 
study also designs and conducts four Comparative 
Analysis techniques (CATs) to compare and contrast 

network level involvements of actors between short-
interval networks and the aggregated network.  

3.1. Data Source and Social Network Measure 
for Communication Network 

 The email communication dataset from Enron, 
named as Enron email corpus, has been analyzed for 
comparative analysis purpose in this study. This corpus 
was released by Federal Energy Regulatory 
Commission (FERC) in May, 2002. Shetty and Adibi 
[19] from University of Southern California created a 
MySQL database of this corpus. They also cleaned the 
database by removing a large number of duplicate 
emails, computer generated folders, junk data, invalid 
email addresses etc. The resulting dataset contains 
252,759 messages from 20,294 distinctive users. In the 
area of organizational science and social networking 
research, the Enron corpus is of great value because it 
allows the academic to conduct research on real-life 
organization over a number of years. 
 The principal focus of this example is to explore 
organizational email communication networks, using 
the proposed research framework, to find out 
characteristics of actor dynamics associated with the 
‘normal’ and ‘crisis’ period. It is well documented in 
the literature that a drastic form of critical loss, which 
was being started to flourish in the beginning of the 
third quarter of 2001, occurs in Enron during the final 
quarter of 2001 [20]. Therefore, this study chooses 
segments of communication networks for the ‘normal’ 
and ‘crisis’ periods: (i) July-December, 2000 for the 
‘normal’ email communication dataset; and (ii) July-
December, 2001 for the ‘crisis’ email communication 
dataset. For conducting static and dynamic topological 
analysis, it is required to consider short-interval 
networks and an aggregated network for both the 
‘normal’ and ‘crisis’ period. For short-interval 
networks, weekly email communication networks are 
chosen because in a period of seven days there found a 
standard number communication exchanges among 
staff in the Enron email corpus.  

The context of this example is email communication 
network. One of the important and primary uses of 
graph theory and network analysis is the identification 
of the most important actor(s) within a social network. 
Various researchers use different terms like 
‘importance’ or ‘prominence’ to describe this important 
network measure. A prominent actor occupies a 
distinctive location in the network that may lead to high 
visibility relative to other actors. Prominence is 
frequently attributed to actors who have many ties in 
the network because such a position is associated with 
high visibility and ability to influence a large number of 
people [21]. Knoke and Burt [22] also considered an
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actor to be prominent if the ties of that actor make it 
particularly visible compared to other actors within the 
network. Hence, the concept of degree centrality has 
been used to describe the prominence of an actor in our 
email communication networks. In particular, to capture 
longitudinal dynamics of network associated with the 
‘normal’ and ‘crisis’ periods, this study uses out-degree 
centrality measure, which is defined by the following 
equation for an actor: 

d(ni ) = �
j

X ij      

Where, d(ni) is the out-degree centrality for the node or 
actor i and X refers to the adjacency matrix for network 
data. Also, relationships are defined as communication 
linkages among actors. Number of emails sent by the 
employees to others within their respective 
communication networks is used to quantify the out-
degree centrality for all actors. 

There are other approaches used by researchers for 
the measure of network prominence. Eigenvector 
centrality is one of them. This approach represents an 
actor’s connectedness to highly connected peers, and 
takes all direct and indirect network paths from the 
focal actor into account [23]. Stefanone et al. [24]
consider actors’ social network density, brokerage, and 
reach in order to explore their local of control and 
pursuit of social capital in a distributed distance 
learning environment of engineering students. 

3.2. Design of Comparative Analysis Technique 
(CAT) to Follow Research Framework  

Before describing the CATs that are followed to 
exercise the proposed research framework, this section 
first defines the following network terms that are used 
in this research example:  
(a) Weekly Network: The network which was evolved, 
by means of email communications, amongst 
employees in each week. 
(b) Aggregated Network: This is the aggregation of 
weekly networks. For the both ‘normal’ and ‘crisis’ 
period, it consists of 26 weekly networks.  
(c) Top-rank list: List of actors who show most out-
degree centralities in the weekly networks or in the 
aggregated network. To compare actor-level network 
dynamics for the year 2000 and 2001, this study 
considers top-ranked list of size 10. From the statistical 
distribution of emails sent by all actors in our research 
dataset, it is observed that top-10 actors sent significant 
number of emails in each weekly network, which has 
guided the choice of 10 for the size of top-ranked list.    
(d) Centrality Overlap: In the process of comparing two 
top-rank lists of weekly networks, an actor is said to be 

overlapped if it is found in both top-rank lists. When 
two weekly top-rank lists are compared in terms of 
overlapping, centrality overlap simply counts the 
number of actors that are located in both top-rank lists. 
For any two weekly top-rank lists (say La and Lb) of 
size n, it can be defined by the following equation: 

��
� �

�
n

i

n

j

x
1 1

Overlap  Centrality          

�
�

�

�
�

�

�

�

� j
bLi

aLif

otherwise
xWhere

1

0
,

And, La and Lb are the top-rank lists for week a and b (a
≠ b) 
 The following four CATs have been conducted to 
carry out topological analysis for the email 
communication networks by following the proposed 
research framework.  

3.2.1. Rank of Actors. First, for both the years of 2000 
and 2001 the number of times the top-10 actors of the 
corresponding aggregated networks have been found in 
26 weekly networks is compared in Table 1. During the 
‘normal’ period, top-10 actors of the aggregated 
network are found more times in the top-10 lists of 26 
weekly networks compared to the ‘crisis’ period.

Table 1: Number of times top-10 actors of the 
aggregated network are found in all weekly 

networks for the years of 2000 and 2001 

ID of top-10 actors of the 
single  aggregated network

Number of times top-10 actor 
of aggregated network are 

found in all weekly networks
Y: 2000 Y: 2001 Y: 2000 Y: 2001

1093 253 25 19
253 347 18 17
5335 256 24 9
288 1654 24 16
3113 43960 20 16
703 280 19 11
2530 293 18 9
642 14557 15 7
4134 22786 11 8
6815 1637 11 5

 Then, presence or absence of the top-10 actors (that 
are found most times in 26 weekly networks) in the 
corresponding aggregated networks are compared for 
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both the years of 2000 and 2001. Top-10 actors of 26 
weekly networks are also found in the aggregated 
network for the year 2000; however, for the year 2001 
only 8 actors have position in the aggregated network 
as illustrated in Table 2.  

Table 2: Illustration of presence or absence of top-10 
actors, which are found most time in all weekly 
networks, in the aggregated networks for both 

‘normal’ and ‘crisis’ period. 

ID of top-10 actors 
that are found most 
times in all weekly 

networks

Number of times 
they are found in 

all weekly 
networks

Do they have position 
in the single 

aggregated network

Y:2000 Y:2001 Y:2000 Y:2001 Y:2000 Y:2001
1093 253 25 19 Yes Yes
288 347 24 17 Yes Yes
5335 1654 24 16 Yes Yes
3113 43960 20 16 Yes Yes
703 280 19 11 Yes Yes
253 293 18 9 Yes Yes
2530 256 18 9 Yes Yes
642 22786 15 8 Yes Yes
6815 6815 11 8 Yes No
4134 1078 11 8 Yes No

 Finally, the size of top-rank list is varied to explore 
positions of top-ranked actors (in terms of their 
presence or absence in aggregated network, and number 
of time they are found in 26 weekly networks) of 
weekly networks for both the years of 2000 and 2001. 
The result is shown in Table 3. With varying the top-
ranked list size, it is observed that during the ‘normal’
period top-ranked actors of 26 weekly networks are also 
found most time in the aggregated network compared to 
the ‘crisis’ period (e.g., 10 versus 8 for the top-ranked 
list size of 10). With the increase of top-rank list size, 
this difference remains almost consistent. For the top-
rank list size of 50, for example, this difference is 46 
versus 42. That means, during the ‘normal’ period top-
ranked actors of all weekly networks are found most 
times in the aggregated network regardless of the size 
of the top-ranked list size. Top-ranked actors show 
higher tendency to have positions in the aggregated 
network during the ‘normal’ period compared to the 
‘crisis’ period. Ranges of the number of times top-
ranked actors (of weekly networks) found in 26 weekly 
networks are also higher for the ‘normal’ period 
compared to the ‘crisis’ period (e.g., 11-25 versus 8-19 
for top-ranked list of 10). This difference remains 
almost unchanged with the change of top-ranked list 
size. For instance, for the top-ranked lists size of 50 this 
difference is 8-27 versus 9-24.  

Table 3: Illustration of the variability of frequency 
and range of the number of times position occupied 
by actors (that are found most times in all weekly 

networks) in the top-ranked lists with the change of 
top-rank list size 

Top-
rank list 

size

Number of actors (that are 
found most times in all
weekly networks) have 

position in the aggregated 
network (considering same 

top-rank list size)

Range of the number of 
times top-ranked actors 
are found in all weekly 
networks (considering 
same top-rank list size)

Y: 2000 Y: 2001 Y: 2000 Y: 2001
10 10 8 11-25 8-19
20 19 16 11-26 9-21
30 27 25 11-27 10-23
40 38 33 9-27 9-24
50 46 42 8-27 9-24

3.2.2. Centrality Overlap. First, the number of 
centrality overlap among all weekly networks is tested 
for both the years of 2000 and 2001. As there are 26 
weekly networks, there is a total of 325 (26C2) pair of 
weekly networks. There is an increased number of 
centrality overlap during the ‘normal’ period compared 
to the ‘crisis’ period as noticed in Table 4. The number 
of centrality overlaps increase with the increase in top-
ranked list size for both the ‘normal’ and ‘crisis’ time.

Table 4: Varying centrality overlap (for the year 
2000 and 2001) among the all weekly networks 

Top-rank 
list size

Number of centrality overlap among weekly
networks

Y: 2000 Y: 2001
5 910 444
10 1895 975
15 2859 1595
20 3897 2286
25 5127 3048
30 6308 3661
35 7157 4487
40 8198 5198
45 9101 5739
50 9482 6123

 Then, the number of centrality overlap between each 
of weekly networks and the aggregated network is 
compared for both the years of 2000 and 2001. As there 
are 26 weekly networks and only one aggregated 
network for each year, there are only 26 pairs of 
networks are considered for the overlap statistics for 
both the ‘normal’ and ‘crisis’ period. For this reason, 
number of overlaps, as showed in Table 5, is 

39333935



significantly low compared to the statistics of the first 
‘centrality overlap’ test (mentioned in Table 4). 
However, trend is similar to the first test – increased 
centrality overlaps in 2000 compared to 2001.  

Table 5: Varying centrality overlap (for the year 
2000 and 2001) between each of weekly networks 

and the aggregated network 

Top-rank 
list size

Number of centrality overlap between each of 
weekly networks and the single aggregated network

Y: 2000 Y: 2001
5 92 57
10 185 117
15 268 184
20 369 252
25 481 332
30 575 397
35 674 467
40 781 548
45 860 619
50 927 696

3.2.3. Activity of Actors. The percentages of emails, 
that are sent by top-10 actors of each weekly network 
during the ‘normal’ and ‘crisis’ period, are compared. 
During the ‘normal’ period top-10 actors of each 
weekly network sent more emails compared to the 
‘crisis’ period as depicted in Figure 3. Similar test is 
conducted to explore percentages of emails sent by top-
10 actors of the aggregated network in each weekly
network during the ‘normal’ and ‘crisis’ period. As 
illustrated in Figure 4, more emails were sent by top-10 
actors of the aggregated network during the ‘normal’
period compared to the ‘crisis’ period. 

3.2.4. Actor Participation. The number of actors 
participates (i.e., sent email to other) in the 
corresponding week of the year 2000 and 2001 is 
compared. Participation of actors is higher during the 
‘crisis’ period (i.e., 2001) compared to the ‘normal’
period (i.e., 2000) as illustrated in Figure 5. There is a 
sharp increase in the participation statistics during the 
‘crisis’ period; however, it remains almost consistent 
during the ‘normal’ period.

3.3. Experimental Outcome from this Research 
Example 

 In this research example, the proposed topological 
framework is successfully exercised, by designing and 
conducting four CATs, to capture actor-oriented 
dynamics for a longitudinal communication network. 
From the first CAT (i.e., Rank of Actors) it is observed 

Figure 4: Percentage of emails sent by top-10
actors (in each week) of the aggregated network

Figure 3: Percentage of emails sent by top-10 actors
(in each week) of each weekly network.

Figure 5: Actors’ participation statistics in the 
weekly networks during the ‘normal’ and ‘crisis’ 

period.
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that positions of top-ranked actors, both in weekly 
networks and in the aggregated network, are more 
stable during the ‘normal’ period: (i) top-10 actors of 
the aggregated network are found most times in weekly 
networks (Table 1); (ii) all of the top-10 actors (that are 
found most times in all weekly networks) are also 
found in the aggregated network (Table 2); and (iii) 
larger range of the number of times top-ranked actors 
are found in all weekly networks (Table 3). Less 
number of centrality overlaps (among all weekly 
networks, and between each of weekly networks and 
the aggregated network) are noticed during the ‘crisis’
period from the second CAT (i.e., Centrality Overlap). 
From the third CAT (i.e., Activity of Actors), it is found 
that top-10 actors of both weekly networks and the 
aggregated network involved in more activity (i.e., sent 
more emails) during the ‘normal’ period compared to 
the ‘crisis’ period. More actors participate in the 
weekly networks during the ‘crisis’ period as notice in 
the last CAT (i.e., Actor Participation).

From the outputs of four CATs, it is noticed that 
actors’ were showing more stable communication 
behaviour during the ‘normal’ period compared to the 
‘crisis’ period of Enron. Actors showed superior
ranking in the top-ranked list, higher centrality overlap, 
more activity, and consisting participation statistics in 
the email networks during the ‘normal’  period 
compared to the ‘crisis’ period. This is because of 
Enron’s organizational practice culture. Numerous post-
mortem studies have commented on Enron’s culture of 
individualized self-enrichment. Enron celebrated a 
culture of accelerated performance coupled with the 
pressure to innovate at speed [25, 26]. The highly 
individualistic and winner-takes-all culture was so 
powerful that it led some senior employees to blur the 
line between legal and illegal activity, through corrupt 
and unethical exploitation of accounting regulations. 
These senior people usually show prominent behaviour 
in the email communication network; however, when 
they realized the possible future economical downfall 
of Enron during mid 2001 they greatly reduced email 
communication [25]. Moreover, many senior 
employees quit Enron while new senior-level 
employees were hired during this time. These newly 
hired employees became prominent as they might have 
been involved with a particular task for a certain period 
of time during the ‘crisis’ period [27]. Besides, as the 
organization was going through a period of crisis, some 
of the employees also left the organization due to job 
insecurity. It is plausible that these issues caused 
Enron’s email network to show less stable 
communication behaviour during the ‘crisis’ period 
compared to the ‘normal’ period. Finally, for the 
analysis of longitudinal network the proposed 
topological framework of this study successfully 

captures these behavioral differences of Enron’s 
communication network. 

4. Discussion  

 Longitudinal networks evolve over time. Therefore, 
existing SNA measures (e.g., centrality [28]) and model 
(e.g., exponential random graph model [29] [30]), that 
are mostly applicable to static networks, cannot capture 
complete dynamics of longitudinal networks. This 
study proposed a novel framework for analyzing 
longitudinal networks. Node-level structural positions 
of actors in each of the short-interval networks are 
compared to their positions in the aggregated network. 
In other words, this framework is based on a cross 
comparison of the structural positions of actors in short-
interval networks and in the aggregated network. This 
comparative approach to study networks ultimately 
facilitates the ease of capturing dynamics of individual 
actor in the longitudinal network. 
 The proposed research framework demonstrates the 
ability to identify and capture some special or irregular 
events that may happen to any longitudinal network. By 
continuously observing the node-level involvement of 
individual actor, this research framework can trace the 
point when a new actor joins the network, or the time 
an existing actor departs from the network, and the
interval of time when an actor may be absent in the 
network or highly involved with other actors within the 
network. These kinds of instances could potentially be 
captured through the dynamic topology of the proposed 
research framework. The dynamic topology, which 
measures structural position of each actor, is applied to 
short-interval networks that constitute the aggregated 
network. Thus, a significant change to the structural 
measure for any actor indicates an alternation to the 
network participation (i.e., may leave the network, or 
join the network, or may hide from the network, or may 
join after hiding for some period) of that actor. 
Furthermore, it is also possible to associate these node-
level changes to node attribute-level data. For instance, 
a new node may suddenly appear at a certain point in 
time displaying high levels of out-degree centrality in 
dynamic network topology and its appearance may be 
attribute to an organizational position (e.g., a vice-
president has just been hired and started to direct and 
manage new and current projects). 

To calculate the top-ranked list in the research 
example, this study considers out-degree centrality 
which represents activity of actors in a network. When 
examining particular measures of prominence, it is 
important to consider carefully whether a given 
measure is applicable to the network in question. In the 
context of organization, activities of actors reflect their
level of involvement in the procedural processes of

39353937



organizations. Other centrality measures (e.g., closeness 
centrality) and network measures (e.g., distance) could 
also be considered for measuring the top-ranked list. 
For instance, in-degree centrality, which indicates actor 
popularity [31], could potentially be used to calculate 
top-ranked list for political networks because level of 
the acceptability of actors is very important in this type 
of network. Similarly, in the context of advice seeking 
network, where a tie represents seeking advice or 
support, an actor with a high in-degree is especially 
prestigious. However, this measure is not suitable to 
measure prominence for our research context as in an 
organization many emails are sent as general notice, 
advice, and report. These types of emails will increase 
the tally of in-degree for all actors; however, they do 
not convincingly represent any prominent behaviour. 
On the other hand, betweenness centrality, which 
reflects actors’ control of communication, might be the 
best choice to calculate the top-ranked list for a broker 
network. We noticed that in our dataset all the actors of 
the short-interval networks and the aggregated networks 
are not reachable and most actors belong to small 
clusters or cliques. Betweenness centrality therefore 
does not represent the prominence in our dataset.  

Only four comparative analysis techniques (CATs)
(i.e., Rank of Actor, Centrality Overlap, Activity of 
Actor, and Actor Participation) were designed and 
implemented for conducting topological analysis of 
email communication network in the research example. 
However, for topological analysis more CATs can be 
designed to compare actors’ behaviour between short-
interval networks and the aggregated network. For 
example, a correlation test could be conducted to 
investigate actors’ level of involvement within the 
network (which could be captured by centrality 
measure) between any two consecutive short-interval 
networks, and between any short-interval network and 
the aggregated network. To give another example, the 
network size (i.e., number of actors participate in the 
network) for short-interval networks compared to the 
aggregated network could be analyzed to explore the 
statistics of entrance and departure of actors to the 
longitudinal network under study.

The methodological contribution of this paper is 
certainly noteworthy. By following static and dynamic 
topology, this study shows a framework about how to 
analyze longitudinal networks. Static topology can 
examine overall behaviour of actors (from the 
aggregated network) whereas dynamic topology is 
suitable for capturing temporal behaviour of actors over 
time. For capturing the overall dynamics of longitudinal 
social networks, it is therefore required to compare the 
temporal behaviour of actors, which can be captured 
using the dynamic topology, with the overall behaviour 
of actor as collected by the static topology. The four 

proposed CATs can do this comparison between static 
and dynamic topological analysis of social networks. 

5. Conclusion and Future Research 
Direction 

 This study proposes a research framework based on 
network topology to capture the dynamics of 
longitudinal networks. Further, this paper shows an 
example where topological approach to analyze 
longitudinal network is employed to capture network 
dynamics of the email communication network of a 
large organization.  
 Recent studies on complexity research argue that 
dynamics of any complex network could be captured by 
having a holistic view of the complete network under 
study rather than investigating each possible link [32, 
33]. This is especially true for very large complex 
networks. For these types of networks, traditional 
methods (e.g., exponential random graph models) have 
degeneracy, non-convergence, and computational 
issues. That means it is not mandatory to inspect each 
link in a network for understanding its evolutionary 
dynamics. Instead it is required to study network 
behavior and role of few dominant actors in a network 
to understand the complete evolutionary dynamics of 
that network. In this regard, the proposed topological 
framework of this study is very appropriate for 
capturing dynamics of longitudinal networks because 
this framework emphasizes on the actor-level 
involvement of prominent individual actor.  
 For small-sized networks, currently there are models 
(e.g., stochastic actor-based model and exponential 
random graph model) available in present literature to 
capture the dynamics of the overall network. For these 
types of networks, the computational complexity is not 
an issue due to their network size. Combined with these 
models, the proposed topological approach will bring 
new research challenges to develop new optimized 
algorithms for many current prediction problems of 
‘network science’ research arena, such as ‘link 
prediction’, and ‘community detection’. Not only that, 
as the proposed topological framework can explore 
structural dynamicity of actors in short-interval 
networks and can compare structural positions of actors 
in short-interval networks with their positions in the 
aggregated network, it has the potential to enhance our 
present knowledge about how to break, control, or 
destroy a network, which is a very important research 
topic in many contexts, such as, ‘Drug Users’ 
Network’, ‘Military Network in War Field’, and 
‘Disease Spread Network’. For example, the 
identification of prominent actors (in terms of spreading 
capability of disease) in an over-time ‘Disease Spread 
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Network’ by applying the proposed research framework 
of this study would guide us to quarantine those 
prominent actors, which will eventually lead to better 
control of that ‘Disease Spread Network’. 
 A more specific future research direction of this 
study is that the proposed framework for topological
analysis of longitudinal network could be applied to 
measure the ‘degree of dynamicity’ showed by an 
individual actor in an evolving network. Dynamicity for 
an actor indicates the level of variances (in respect of a 
social network analysis measure) showed by that actor 
in different short-interval networks compared to its 
position in the aggregated network of a longitudinal 
network [34]. The following equation could be a 
possible way to measure ‘degree of dynamicity’
showed by an individual actor in a longitudinal 
network: 
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Where, DDA represents ‘degree of dynamicity showed 
by individual actor’, ANOV indicates observed value 
(say degree) in the aggregated network for a particular 
actor, i

SINOV indicates observed value for the same 
SNA measure (i.e., degree) in the ith short-interval 
network (SIN) for that actor, and m indicates the 
number of SINs considered in the analysis. By using the 
above equation for DDA, the ‘degree of dynamicity’ 
showed by the complete network could be captured for 
any given time-evolving network by the following 
equation:   
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Where, DDN represents ‘degree of dynamicity’ showed 
by the complete network, *DDA is the highest observed 
‘degree of dynamicity’ showed by  individual actor in 
the network, iDDA is the ‘degree of dynamicity’ for 
actor i, and n is the number of actors in the network. 
These two constructs (i.e., DDA and DDN) eventually 
enable us to compare the degree of dynamicity of two 
or more different longitudinal networks.  
 Two longitudinal networks are analyzed and 
compared using the proposed topological framework in 
this study. Actor-level statistics of email 
communication networks are compared for the ‘normal’ 
and ‘crisis’ period data. Apart from the four 
comparative analysis techniques (CATs) proposed in 
this paper, other statistical methods could be employed 
to explore actors’ behaviour in longitudinal networks.
For instance, control chart theory and methods could be 
incorporated to compare actor-level behaviour for a 
single dynamic network over time. This theory and its 

corresponding available methods can monitor a 
stochastic process over time, and rapidly detect 
statistically significant departures from typical 
behaviour.  
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