7,086 research outputs found

    The hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis

    Full text link
    This paper presents an a priori error analysis of the hp-version of the boundary element method for the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. We use H(div)-conforming discretisations with Raviart-Thomas elements on a sequence of quasi-uniform meshes of triangles and/or parallelograms. Assuming the regularity of the solution to the electric field integral equation in terms of Sobolev spaces of tangential vector fields, we prove an a priori error estimate of the method in the energy norm. This estimate proves the expected rate of convergence with respect to the mesh parameter h and the polynomial degree p

    Natural hp-BEM for the electric field integral equation with singular solutions

    Full text link
    We apply the hp-version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface G. The underlying meshes are supposed to be quasi-uniform triangulations of G, and the approximations are based on either Raviart-Thomas or Brezzi-Douglas-Marini families of surface elements. Non-smoothness of G leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behaviour of the solution can be explicitly specified using a finite set of power functions (vertex-, edge-, and vertex-edge singularities). In this paper we use this fact to perform an a priori error analysis of the hp-BEM on quasi-uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents.Comment: 17 page

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    hp-version time domain boundary elements for the wave equation on quasi-uniform meshes

    Get PDF
    Solutions to the wave equation in the exterior of a polyhedral domain or a screen in R3\mathbb{R}^3 exhibit singular behavior from the edges and corners. We present quasi-optimal hphp-explicit estimates for the approximation of the Dirichlet and Neumann traces of these solutions for uniform time steps and (globally) quasi-uniform meshes on the boundary. The results are applied to an hphp-version of the time domain boundary element method. Numerical examples confirm the theoretical results for the Dirichlet problem both for screens and polyhedral domains.Comment: 41 pages, 11 figure

    Generation of curved high-order meshes with optimal quality and geometric accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric L2-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the L2-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.Peer ReviewedPostprint (published version

    Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric Full-size image (<1 K)-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the Full-size image (<1 K)-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.This research was partially supported by the Spanish Ministerio de Economía y Competitividad under grand contract CTM2014-55014-C3-3-R, and by the Government of Catalonia under grand contract 2014-SGR-1471. The work of the last author was supported by the European Commission through the Marie Sklodowska-Curie Actions (HiPerMeGaFlows project).Peer ReviewedPostprint (published version

    Discontinuous Galerkin Methods for the Biharmonic Problem on Polygonal and Polyhedral Meshes

    Get PDF
    We introduce an hphp-version symmetric interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the biharmonic equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, the stability and hphp-version a-priori error bound are derived based on the specific choice of the interior penalty parameters which allows for edges/faces degeneration. Furthermore, by deriving a new inverse inequality for a special class {of} polynomial functions (harmonic polynomials), the proposed DGFEM is proven to be stable to incorporate very general polygonal/polyhedral elements with an \emph{arbitrary} number of faces for polynomial basis with degree p=2,3p=2,3. The key feature of the proposed method is that it employs elemental polynomial bases of total degree Pp\mathcal{P}_p, defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. A series of numerical experiments are presented to demonstrate the performance of the proposed DGFEM on general polygonal/polyhedral meshes
    corecore