2,146 research outputs found

    Semi-Global Exponential Stability of Augmented Primal-Dual Gradient Dynamics for Constrained Convex Optimization

    Full text link
    Primal-dual gradient dynamics that find saddle points of a Lagrangian have been widely employed for handling constrained optimization problems. Building on existing methods, we extend the augmented primal-dual gradient dynamics (Aug-PDGD) to incorporate general convex and nonlinear inequality constraints, and we establish its semi-global exponential stability when the objective function is strongly convex. We also provide an example of a strongly convex quadratic program of which the Aug-PDGD fails to achieve global exponential stability. Numerical simulation also suggests that the exponential convergence rate could depend on the initial distance to the KKT point

    Linear Convergence of Primal-Dual Gradient Methods and their Performance in Distributed Optimization

    Full text link
    In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential) convergence of the algorithm for smooth strongly-convex cost functions and study its relation to the non-incremental implementation. We also study the effect of the augmented Lagrangian penalty term on the performance of distributed optimization algorithms for the minimization of aggregate cost functions over multi-agent networks

    An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

    Get PDF
    We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achieves faster linear convergence rates than existing randomized proximal coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear convergence rates. We show how to apply the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method
    • …
    corecore