75 research outputs found

    Tractability of multivariate analytic problems

    Full text link
    In the theory of tractability of multivariate problems one usually studies problems with finite smoothness. Then we want to know which ss-variate problems can be approximated to within ε\varepsilon by using, say, polynomially many in ss and ε1\varepsilon^{-1} function values or arbitrary linear functionals. There is a recent stream of work for multivariate analytic problems for which we want to answer the usual tractability questions with ε1\varepsilon^{-1} replaced by 1+logε11+\log \varepsilon^{-1}. In this vein of research, multivariate integration and approximation have been studied over Korobov spaces with exponentially fast decaying Fourier coefficients. This is work of J. Dick, G. Larcher, and the authors. There is a natural need to analyze more general analytic problems defined over more general spaces and obtain tractability results in terms of ss and 1+logε11+\log \varepsilon^{-1}. The goal of this paper is to survey the existing results, present some new results, and propose further questions for the study of tractability of multivariate analytic questions

    The construction of good lattice rules and polynomial lattice rules

    Full text link
    A comprehensive overview of lattice rules and polynomial lattice rules is given for function spaces based on p\ell_p semi-norms. Good lattice rules and polynomial lattice rules are defined as those obtaining worst-case errors bounded by the optimal rate of convergence for the function space. The focus is on algebraic rates of convergence O(Nα+ϵ)O(N^{-\alpha+\epsilon}) for α1\alpha \ge 1 and any ϵ>0\epsilon > 0, where α\alpha is the decay of a series representation of the integrand function. The dependence of the implied constant on the dimension can be controlled by weights which determine the influence of the different dimensions. Different types of weights are discussed. The construction of good lattice rules, and polynomial lattice rules, can be done using the same method for all 1<p1 < p \le \infty; but the case p=1p=1 is special from the construction point of view. For 1<p1 < p \le \infty the component-by-component construction and its fast algorithm for different weighted function spaces is then discussed
    corecore