3 research outputs found

    Spectral Perspective on the Stability of Discrete-Time Markov Jump Systems with Multiplicative Noise

    Get PDF
    We apply the spectrum analysis approach to address the stability of discrete-time Markov jump systems with state-multiplicative noise. In terms of the spectral distribution of a generalized Lyapunov operator, spectral criteria are presented to testify three different kinds of stochastic stabilities: asymptotic mean square stability, critical stability, and essential instability

    On delay-dependent robust exponential stability of stochastic neural networks with mixed time delays and Markovian switching

    No full text
    This paper deals with the global exponential stability analysis problem for a general class of uncertain stochastic neural networks with mixed time delays and Markovian switching. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed stochastic neural network is robustly exponentially stable in the mean square in the presence of parameters uncertainties, mixed time delays, and Markovian switching. By employing new Lyapunov-Krasovskii functionals and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria for the robust exponential stability, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. The criteria derived are dependent on both the discrete time delay and distributed time delay, and, are therefore, less conservative. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria

    On delay-dependent robust exponential stability of stochastic neural networks with mixed time delays and Markovian switching

    No full text
    This paper deals with the global exponential stability analysis problem for a general class of uncertain stochastic neural networks with mixed time delays and Markovian switching. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed stochastic neural network is robustly exponentially stable in the mean square in the presence of parameters uncertainties, mixed time delays, and Markovian switching. By employing new Lyapunov-Krasovskii functionals and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria for the robust exponential stability, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. The criteria derived are dependent on both the discrete time delay and distributed time delay, and, are therefore, less conservative. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria
    corecore