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We apply the spectrum analysis approach to address the stability of discrete-time Markov jump systems with state-multiplicative
noise. In terms of the spectral distribution of a generalized Lyapunov operator, spectral criteria are presented to testify three different
kinds of stochastic stabilities: asymptotic mean square stability, critical stability, and essential instability.

1. Introduction

Since the pioneering research of [1], Markov jump systems
have received an increasing attention from the control
community. The main impetus for studying this kind of
systems arises from the widespread dynamics that are subject
to abrupt structural changes, such as random component
failures or repairs, sudden variation in operating points
of nonlinear plants, the switching between the economic
scenarios, and temporary loss of communication signal. By
now, the study of Markov jump systems has become one of
the most active areas in the control theory and great progress
has been made in the relevant analysis and synthesis. Among
many contributions, we would like to mention that structural
properties and quadratic optimal control of continuous-time
Markov jump linear systems have been considered in [2].
Stability and robust control design have been performed in
[3] for discrete-time Markov jump linear systems. Moreover,
robustly asymptotic stabilization for a class of stochastically
nonlinear singular jump systemshas been tackled in [4] based
on the Lyapunov-Krasovskii functional. Besides, stability
analyses for Markovian jumping neural networks with delays
have also been elaborately addressed; see [5–10] and the
references therein. Recently, many researchers are attracted
to the study of stochastic linear systems subject to both
multiplicative noise perturbations and Markov jump, which
are commonly viewed as a powerful mathematical tool to

investigate the financial phenomena and engineering prob-
lems. For instance, the indefinite stochastic linear quadratic
(LQ) optimal control was tackled in [11] for discrete-time
multiplicative noise systems with Markov jump parameters.
Robust 𝐻

∞
filtering has been reported in [12] for stochastic

nonlinear Itô systems with Markov jumps. In addition, by
means of four coupled matrix recursions, mixed 𝐻

2
/𝐻
∞

control problem has been settled in [13] for a class of discrete-
time Markov jump systems with multiplicative noise. For
more details of recent developments, interested readers are
referred to [14–16] and the references cited therein.

It is well known that stability is one of the most funda-
mental notions in the modern control theory. It is the primal
factor to be taken into account in the controller design. For
stochastic Itô systems and Markov jump systems, various
stability concepts such as stochastic stability, exponential
stability [17–19], asymptotic stability in probability [20],
finite-time stability [21], global asymptotical stability [22, 23],
and absolute stability [24] have been studied extensively.
It can be remarked that almost all existing works about
the stability analysis of stochastic systems are based on the
Lyapunov functional method. However, our main purpose
is to provide a spectral perspective about the stability of
discrete-time Markov jump systems with state-multiplicative
noise. Concretely speaking, we will employ the spectral
analysis technique to classify three different kinds of stabil-
ities: asymptotic mean square stability, critical stability, and
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essential instability. For them, spectral criteria are derived
according to a generalized Lyapunov operator generated from
the system coefficients and transition probability matrix of
Markov jump parameter.

The rest of this paper is organized as follows. In Section 2,
we introduce a generalized Lyapunov operator which serves
as the fundamental tool in the stability analysis. In Section 3,
necessary and sufficient conditions, including spectral cri-
teria, are supplied for three kinds of stochastic stabilities,
respectively. Section 4 ends this paper with a brief concluding
remark.

Throughout this paper, the following notations are
adopted: R𝑛: 𝑛-dimensional Euclidean space with the usual
2-norm ‖ ⋅ ‖; R𝑛×𝑚: the space of all 𝑛 × 𝑚 real matrices; S𝑛:
the set of all 𝑛 × 𝑛 symmetric matrices;𝑀 > 0(≥ 0): 𝑀 that
is positive definite (positive semidefinite) symmetric matrix;
R𝑁
𝑛×𝑚

(S𝑁
𝑛
): the set of all 𝑁 sequences 𝑉 = (𝑉

1
, . . . , 𝑉

𝑁
)

with 𝑉
𝑖
∈ R𝑛×𝑚(S𝑛); S𝑁

𝑛+
: the set of all 𝑁 sequences 𝑉 =

(𝑉
1
, . . . , 𝑉

𝑁
) where 𝑉

𝑖
∈ S𝑛 and 𝑉

𝑖
≥ 0; 𝐴: the transpose of a

matrix (vector) 𝐴; 𝐴 ⊗ 𝐵: the Kronecker product of matrices
𝐴 and 𝐵; 𝐼

𝑛
: the 𝑛 × 𝑛 identity matrix; 𝑁 := {0, 1, . . .}, 𝑁

𝑡
:=

{0, . . . , 𝑡}, and𝑁 := {1, . . . , 𝑁}; 𝐼
{𝐴}

: the indicator function of
a set 𝐴.

2. Lyapunov-Type Operator and Its Spectra

On a given probability space (Ω,F,P), we consider the
following linear system with Markovian jumps and multi-
plicative noise:

𝑥 (𝑘 + 1) = 𝐴 (𝜃
𝑘
) 𝑥 (𝑘) + 𝐶 (𝜃

𝑘
) 𝑥 (𝑘) 𝑤 (𝑘) ,

𝑥 (0) = 𝑥
0
∈ R
𝑛

, 𝑘 ∈ 𝑁,

(1)

where 𝑥(𝑘) ∈ R𝑛 represents the state of the system. 𝜃(𝑘)
is a Markov chain taking values in 𝑁 and the transition
probabilitymatrix isP = [𝑝

𝑖𝑗
]
𝑁×𝑁

,𝑝
𝑖𝑗
= 𝑃(𝜃

𝑘+1
= 𝑗 | 𝜃

𝑘
= 𝑖).

𝑤(𝑘) (𝑘 ∈ 𝑁
𝑇
) is a sequence of real random variables with

𝐸(𝑤(𝑘)) = 0 and 𝐸(𝑤(𝑘)𝑤(𝑠)) = 𝛿
𝑘𝑠
(Kronecker function).

The random variables {𝑤(𝑘), 𝑘 = 0, 1, . . .} are independent
of the Markov chain {𝜃

𝑘
, 𝑘 = 0, 1, . . .}. The initial value 𝜃

0

is independent of the noise 𝑤(𝑘) (𝑘 ∈ 𝑁
𝑇
). Set F

𝑘
the 𝜎-

field generated by {(𝜃
𝑡
, 𝑥(𝑡)), 𝑡 = 0, 1, . . . , 𝑘}. Fixing 𝜃

𝑘
= 𝑖, we

denote 𝐴(𝜃
𝑘
) = 𝐴

𝑖
, 𝐶(𝜃
𝑘
) = 𝐶
𝑖
, where 𝐴

𝑖
and 𝐶

𝑖
(𝑖 ∈ 𝑁) are

matrix-valued functions of suitable dimensions. Let

A = (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑁
) , C = (𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑁
) . (2)

In the sequel, system (1) is also written as [𝐴, 𝐶 | P] for short.
First of all, we show a useful representation which

characterizes the state evolution of system (1).

Theorem 1. For [A,C | P], one sets that 𝑋
𝑖
(𝑘) =

𝐸[𝑥(𝑘)𝑥(𝑘)


𝐼
{𝜃𝑘=𝑖}

]. Then,𝑋
𝑖
(𝑘) (𝑖 ∈ 𝑁) satisfies

𝑋
𝑖
(𝑘 + 1) =

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐴
𝑗
𝑋
𝑗
(𝑘) 𝐴


𝑗
+

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐶
𝑗
𝑋
𝑗
(𝑘) 𝐶


𝑗
,

𝑋
𝑖
(0) = 𝐸 [𝑥

0
𝑥


0
𝐼
{𝜃0=𝑖}

] .

(3)

Proof. Since𝑥(𝑘)𝑥(𝑘) and 𝜃
𝑘
areF

𝑘
-measurable and {𝜃

𝑘
, 𝑘 =

0, 1, . . .} are independent of {𝑤(𝑘), 𝑘 = 0, 1, . . .}, we have

𝑋
𝑖
(𝑘 + 1)

= 𝐸 [𝑥 (𝑘 + 1) 𝑥(𝑘 + 1)


𝐼
{𝜃𝑘+1=𝑖}

]

= 𝐸 { [𝐴 (𝜃
𝑘
) 𝑥 (𝑘) + 𝐶 (𝜃

𝑘
) 𝑥 (𝑘) 𝑤 (𝑘)]

× [𝐴 (𝜃
𝑘
) 𝑥 (𝑘) + 𝐶 (𝜃

𝑘
) 𝑥 (𝑘)𝑤 (𝑘)]



𝐼
{𝜃𝑘+1=𝑖}

}

= 𝐸{[𝐴 (𝜃
𝑘
) 𝑥 (𝑘) 𝑥(𝑘)



𝐴(𝜃
𝑘
)


+ 𝐶 (𝜃
𝑘
) 𝑥 (𝑘) 𝑥(𝑘)



𝐶(𝜃
𝑘
)


𝑤
2

(𝑘)

+ 𝐴 (𝜃
𝑘
) 𝑥 (𝑘) 𝑥(𝑘)



𝐶(𝜃
𝑘
)


𝑤 (𝑘)

+𝐶 (𝜃
𝑘
) 𝑥 (𝑘) 𝑥(𝑘)



𝐴(𝜃
𝑘
)


𝑤 (𝑘) ] 𝐼
{𝜃𝑘+1=𝑖}

}

=

𝑁

∑

𝑗=1

𝐸{𝐸{[𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗

+ 𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤 (𝑘)

+ 𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤
2

(𝑘)

+𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗
𝑤 (𝑘) ]

× 𝐼
{𝜃𝑘+1=𝑖}

𝐼
{𝜃𝑘=𝑗}

| F
𝑘
}}

=

𝑁

∑

𝑗=1

𝐸{{[𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗

+ 𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤 (𝑘)

+ 𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤
2

(𝑘)

+𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗
𝑤 (𝑘) ] 𝐼

{𝜃𝑘=𝑗}
}

×𝐸 {𝐼
{𝜃𝑘+1=𝑖}

| 𝜎 {𝜃
𝑘
: 𝑘 = 0, 1, . . . , 𝑘}} }

=

𝑁

∑

𝑗=1

𝐸{[𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗

+ 𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤 (𝑘)

+ 𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤
2

(𝑘)

+𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗
𝑤 (𝑘) ] 𝐼

{𝜃𝑘=𝑗}
}

× 𝐸 {𝐼
{𝜃𝑘+1=𝑖}

| 𝜎 {𝜃
𝑘
: 𝑘 = 0, 1, . . . , 𝑘}}
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=

𝑁

∑

𝑗=1

𝐸{[𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗

+ 𝐴
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤 (𝑘)

+ 𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐶


𝑗
𝑤
2

(𝑘)

+𝐶
𝑗
𝑥 (𝑘) 𝑥(𝑘)



𝐴


𝑗
𝑤 (𝑘) ] 𝐼

{𝜃𝑘=𝑗}
}

× 𝑃 {𝜃
𝑘+1

= 𝑖 | 𝜃
𝑘
= 𝑗}

=

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐴
𝑗
𝑋
𝑗
(𝑘) 𝐴


𝑗
+

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐶
𝑗
𝑋
𝑗
(𝑘) 𝐶


𝑗
,

𝑋
𝑖
(0) = 𝐸 [𝑥 (0) 𝑥(0)



𝐼
{𝜃0=𝑖}

] = 𝐸 [𝑥
0
𝑥


0
𝐼
{𝜃0=𝑖}

] .

(4)

The proof is completed.

Given 𝑋 = (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
) ∈ S𝑁

𝑛
, we introduce the

following Lyapunov operator:

L
𝑖

𝐴,𝐶
(𝑋) =

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐴
𝑗
𝑋
𝑗
𝐴


𝑗
+

𝑁

∑

𝑗=1

𝑝
𝑗𝑖
𝐶
𝑗
𝑋
𝑗
𝐶


𝑗
,

L
𝐴,𝐶

(𝑋) = (L
1

𝐴,𝐶
(𝑋) ,L

2

𝐴,𝐶
(𝑋) , . . . ,L

𝑁

𝐴,𝐶
(𝑋)) .

(5)

According to the formulation of 𝑋
𝑖
(𝑘) (𝑖 ∈ 𝑁) derived in

Theorem 1, the spectra ofL
𝐴,𝐶

are defined as follows.

Definition 2. For [A,C | P], letL
𝐴,𝐶

be the linear operator
from S𝑁

𝑛
to S𝑁
𝑛
. Then, the spectral set ofL

𝐴,𝐶
is

𝜎 (L
𝐴,𝐶

) := {𝜆 ∈ 𝐶 : L
𝐴,𝐶

(𝑋) = 𝜆𝑋,𝑋 ∈ S
𝑁

𝑛
, 𝑋 ̸= 0} . (6)

Let us see an illustrative example which shows how to
compute all the spectra ofL

𝐴,𝐶
.

Example 3. In [A,C | P], the jump parameter 𝜃
𝑘
takes values

in𝑁 = {1, 2} and the transition probability matrix is given by

P = [

1 0

1

10

9

10

] . (7)

When 𝜃
𝑘
= 1,

𝐴
1
=

[
[
[

[

1

2
−
1

4

1

4
0

]
]
]

]

, 𝐶
1
=

[
[
[

[

−
1

4

1

2

0 −
1

4

]
]
]

]

. (8)

In the case of 𝜃
𝑘
= 2,

𝐴
2
= [

[

1

2
0

0 1

]

]

, 𝐶
2
=

[
[
[

[

1

2

1

2

0 −
1

2

]
]
]

]

. (9)

By (5) and noting the symmetry of𝑋, we get

L
1

𝐴,𝐶
(𝑋) =

[
[
[

[

5

16
𝑥
11

1
−
1

2
𝑥
12

1
+

5

16
𝑥
22

1
∗

1

8
𝑥
11

1
−
1

8
𝑥
22

1

1

16
𝑥
11

1
+

1

16
𝑥
22

1

]
]
]

]

+

[
[
[

[

1

20
𝑥
11

2
+

1

20
𝑥
12

2
+

1

40
𝑥
22

2
∗

1

40
𝑥
12

2
−

1

40
𝑥
22

2

1

8
𝑥
22

2

]
]
]

]

,

(10)

L
2

𝐴,𝐶
(𝑋) =

[
[
[

[

9

20
𝑥
11

2
+

9

20
𝑥
12

2
+

9

40
𝑥
22

2
∗

9

40
𝑥
12

2
−

9

40
𝑥
22

2

9

8
𝑥
22

2

]
]
]

]

, (11)

where ∗ is the ellipsis of the symmetric terms.The eigenvalue
equation in (6) can be equivalently expressed as

𝐿
𝑀

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
11

1

𝑥
12

1

𝑥
22

1

𝑥
11

2

𝑥
12

2

𝑥
22

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝜆

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
11

1

𝑥
12

1

𝑥
22

1

𝑥
11

2

𝑥
12

2

𝑥
22

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

Further, we can derive

𝐿
𝑀

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

5

16
−
1

2

5

16

1

20

1

20

1

40

1

8
0 −

1

8
0

1

40
−
1

40

1

16
0

1

16
0 0

1

8

0 0 0
9

20

9

20

9

40

0 0 0 0
9

40

9

40

0 0 0 0 0
9

8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (13)

It is easy to obtain that the spectral set ofL
𝐴,𝐶

is

𝜎 (L
𝐴,𝐶

) = {
1

4
,
9

40
,
9

20
,
9

8
,
1

16
±
√7

16
𝑗} , 𝑗

2

= −1. (14)

Remark 4. The matrix 𝐿
𝑀 that appeared in Example 3 is

called the induced matrix ofL
𝐴,𝐶

. Clearly, 𝐿𝑀 is unique and
has the same eigenvalues as the operatorL

𝐴,𝐶
.
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Similar to [25, 26], we define two linear operators �⃗� and
𝜑 as follows: ∀𝑋 = (𝑋

1
, . . . , 𝑋

𝑁
) ∈ 𝑆
𝑁

𝑛
,

�⃗� (𝑋) =
[
[

[

�⃗� (𝑋
1
)

...
�⃗� (𝑋
𝑁
)

]
]

]

, 𝜑 (𝑋) =
[
[

[

𝜑 (𝑋
1
)

...
𝜑 (𝑋
𝑁
)

]
]

]

,

�⃗� (𝑋
𝑖
) = (𝑥

11

𝑖
, . . . , 𝑥

1𝑛

𝑖
, 𝑥
21

𝑖
, . . . , 𝑥

2𝑛

𝑖
, . . . , 𝑥

𝑛1

𝑖
, . . . , 𝑥

𝑛𝑛

𝑖
)


,

𝜑 (𝑋
𝑖
) = (𝑥

11

𝑖
, . . . , 𝑥

1𝑛

𝑖
, 𝑥
22

𝑖
, . . . , 𝑥

2𝑛

𝑖
, . . . , 𝑥

𝑛−1,𝑛−1

𝑖
, 𝑥
𝑛−1,𝑛

𝑖
, 𝑥
𝑛𝑛

𝑖
)


,

(15)

where 𝑥𝑗𝑘
𝑖
(𝑗, 𝑘 = 1, 2, . . . , 𝑛) is the element of 𝑋

𝑖
. That is,

�⃗�(𝑋
𝑖
) is a column vector consisting of all elements of 𝑋

𝑖
,

while 𝜑(𝑋
𝑖
) is the column vector generated by all upper

diagonal elements of 𝑋
𝑖
. The relation between them can be

dominated by the unique matrix𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

that is of full
column rank:

�⃗� (𝑋) = 𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

𝜑 (𝑋) . (16)

In fact, if we take that

Θ(𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

, 𝐴, 𝐶)

= (𝐻


𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

)
−1

× 𝐻


𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

⋅ {(P


⊗ 𝐼)Diag (𝐴
𝑖
⊗ 𝐴
𝑖
+ 𝐶
𝑖
⊗ 𝐶
𝑖
)}𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

,

(17)

where

Diag (𝐴
𝑖
⊗ 𝐴
𝑖
+ 𝐶
𝑖
⊗ 𝐶
𝑖
) =

[
[
[
[

[

Π
1

0 ⋅ ⋅ ⋅ 0

0 Π
2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ Π

𝑁

]
]
]
]

]

,

Π
𝑖
= 𝐴
𝑖
⊗ 𝐴
𝑖
+ 𝐶
𝑖
⊗ 𝐶
𝑖
, 𝑖 ∈ 𝑁,

(18)

then the expression of 𝐿𝑀 turns out to be

𝐿
𝑀

= Θ (𝐻
𝑛
2
𝑁,(𝑛(𝑛+1)/2)𝑁

, 𝐴, 𝐶) . (19)

By Definition 2, the operator L
𝐴,𝐶

is a linear operator
defined on the Hilbert space S𝑁

𝑛
with the inner product

⟨𝐴, 𝐵⟩ = ∑
𝑁

𝑖=1
Tr(𝐴
𝑖
𝐵
𝑖
), where 𝐴, 𝐵 ∈ S𝑁

𝑛
. The adjoint oper-

ator of L
𝐴,𝐶

induced by the definition of inner production
and the property of trace is given as follows:

L
𝑖,∗

𝐴,𝐶
(𝑋) =

𝑁

∑

𝑗=1

𝑝
𝑖𝑗
𝐴


𝑖
𝑋
𝑗
𝐴
𝑖
+

𝑁

∑

𝑗=1

𝑝
𝑖𝑗
𝐶


𝑖
𝑋
𝑗
𝐶
𝑖
,

L
∗

𝐴,𝐶
(𝑋) = (L

1,∗

𝐴,𝐶
(𝑋) ,L

2,∗

𝐴,𝐶
(𝑋) , . . . ,L

𝑁,∗

𝐴,𝐶
(𝑋)) .

(20)

We can show that L∗
𝐴,𝐶

and L
𝐴,𝐶

have the same spectral
radius. Particularly, when the coefficients of [A,C | P] are
all real matrices, we have 𝜎(L

𝐴,𝐶
) = 𝜎(L∗

𝐴,𝐶
).

3. Stability Analysis

Stability is one of the core concepts in the modern control
theory. It is a common sense that stability is a necessary
prerequisite for the system to behave well. Next, we will
make use of the spectrum technique to discuss the stability
of system (1).

3.1. AsymptoticMean Square Stability. Above all, we recall the
well-known asymptotic mean square stability of stochastic
Markov jump systems.

Definition 5. The system described by the state equation
(1) is asymptotically mean square stable (AMSS), if for any
𝑥
0
∈ R𝑛 and 𝜃

0
∈ 𝑁, the corresponding state satisfies

lim
𝑘→∞

𝐸‖𝑥(𝑘)‖
2

= 0.
In terms of the spectra of the operator L

𝐴,𝐶
, several

necessary and sufficient conditions can be obtained for the
asymptotic mean square stability of [A,C | P].

Theorem 6. The following assertions are equivalent to AMSS
of [A,C | P]:

(i) 𝜎(L
𝐴,𝐶

) ⊂ D(0, 1) := {𝜆 : 𝜆 ∈ C, |𝜆| < 1};

(ii) for any given ∀𝑊 = (𝑊
1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈ S𝑁

𝑛+
with

𝑊 > 0, there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈ S𝑁

𝑛+
with

𝑉 > 0 such thatL
𝐴,𝐶

(𝑉) − 𝑉 = −𝑊;

(iii) for any given ∀𝑊 = (𝑊
1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈ S𝑁

𝑛+
with

𝑊 > 0, there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈ S𝑁

𝑛+
with

𝑉 > 0 such thatL∗
𝐴,𝐶

(𝑉) − 𝑉 = −𝑊;

(iv) there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈ S𝑁

𝑛+
with 𝑉 > 0

such thatL
𝐴,𝐶

(𝑉) − 𝑉 < 0;

(v) there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈ S𝑁

𝑛+
with 𝑉 > 0

such thatL∗
𝐴,𝐶

(𝑉) − 𝑉 < 0.

Proof. We only show the validity of (i). The rigorous argu-
ments of (ii)–(v) can be found in [3]. Set that 𝑋

𝑖
(𝑘) =

𝐸[𝑥(𝑘)𝑥(𝑘)


𝐼
{𝜃𝑘=𝑖}

] (𝑖 ∈ 𝑁) and 𝑋(𝑘) = (𝑋
1
(𝑘), . . . , 𝑋

𝑁
(𝑘)).

Based on the state equation of [A,C | P], Theorem 1 and
Definition 2 give that

𝑋 (𝑘 + 1) = L
𝐴,𝐶

(𝑋 (𝑘)) ,

𝑋 (0) = 𝑋
0
= (𝐸 [𝑥

0
𝑥


0
𝐼
{𝜃0=1}

] , . . . , 𝐸 [𝑥
0
𝑥


0
𝐼
{𝜃0=𝑁}

]) .

(21)

Recalling Remark 4 and using the operator 𝜑, (21) can be
equivalently expressed as

𝜑 (𝑋 (𝑘 + 1)) = 𝐿
𝑀

𝜑 (𝑋 (𝑘)) , 𝜑 (𝑋 (0)) = 𝜑 (𝑋
0
) .

(22)

From Definition 5, we have [A,C | P] that is asymptotically
mean square stable if and only if lim

𝑘→∞
𝐸‖𝑥(𝑘)‖

2

= 0; that
is, lim

𝑘→∞
𝐸[𝑥(𝑘)𝑥(𝑘)



𝐼
{𝜃𝑘=𝑖}

] = 0, 𝑖 ∈ 𝑁. By (22) and the
stability theory of discrete-time linear systems, the desired
result follows.
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Example 7. In [A,C | P], the jump parameter 𝜃
𝑘
takes values

in𝑁 = {1, 2} and the transition probability matrix is given by

P = [

1 0

1

2

1

2

] . (23)

Let

𝐴
1
=

[
[
[

[

1

2
−
1

4

1

4
0

]
]
]

]

, 𝐴
2
= [

1

2
0

0 1

] ,

𝐶
1
=

[
[
[

[

−
1

4

1

2

0 −
1

4

]
]
]

]

, 𝐶
2
=

[
[
[

[

1

2

1

2

0 −
1

2

]
]
]

]

.

(24)

There exists

𝑉
1
= [

6.7347 −0.3543

−0.3543 5.1088
] , 𝑉

2
= [

2.8953 −0.6119

−0.6119 4.1560
] ,

(25)

satisfying the following LMIs:

𝑝
11
(𝐴
1
𝑉
1
𝐴


1
+ 𝐶
1
𝑉
1
𝐶


1
) + 𝑝
21
(𝐴
2
𝑉
2
𝐴


2
+ 𝐶
2
𝑉
2
𝐶


2
) − 𝑉
1

< 0,

𝑝
12
(𝐴
1
𝑉
1
𝐴


1
+ 𝐶
1
𝑉
1
𝐶


1
) + 𝑝
22
(𝐴
2
𝑉
2
𝐴


2
+ 𝐶
2
𝑉
2
𝐶


2
) − 𝑉
2

< 0,

𝑉
1
> 0, 𝑉

2
> 0.

(26)

It thus follows by Theorem 6 that the system denoted by this
example is asymptotically mean square stable.

3.2. Critical Stability. In this subsection, we are concerned
with the critical stability, which was first proposed in [27] and
played a key role in defining the strong solution of a class of
generalized Riccati equations arising from stochastic linear
quadratic control problem. The following definition can be
regarded as an extension of Definition 2.3 [27].

Definition 8. [A,C | P] is called critically stable, if
𝜎(L
𝐴,𝐶

) ⊂ D[0, 1] := {𝜆 : 𝜆 ∈ C, |𝜆| ≤ 1}.
The following result presents useful criteria for verifying

the critical stability of [A,C | P]. Its proof can be
accomplished by using Theorem 6 and Definition 8. So, only
conclusions are listed below.

Theorem 9. [A,C | P] is critically stable if and only if one of
the following conditions is satisfied:

(i) for any given ∀𝜀 > 1, 𝜎(L
𝐴/√𝜀,𝐶/√𝜀

) ⊂ D(0, 1);
(ii) for any given ∀𝜀 > 1 and 𝑊 = (𝑊

1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈

S𝑁
𝑛+

with 𝑊 > 0, there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈

S𝑁
𝑛+

with 𝑉 > 0 such thatL
𝐴/√𝜀,𝐶/√𝜀

(𝑉) − 𝑉 = −𝑊;

(iii) for any given ∀𝜀 > 1 and 𝑊 = (𝑊
1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈

S𝑁
𝑛+

with 𝑊 > 0, there exists 𝑉 = (𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈

S𝑁
𝑛+

with 𝑉 > 0 such thatL∗
𝐴/√𝜀,𝐶/√𝜀

(𝑉) − 𝑉 = −𝑊;
(iv) for any given∀𝜀 > 1, there exists𝑉 = (𝑉

1
, 𝑉
2
, . . . ,𝑉

𝑁
) ∈

S𝑁
𝑛+

with 𝑉 > 0 such thatL
𝐴/√𝜀,𝐶/√𝜀

(𝑉) − 𝑉 < 0;
(v) for any given∀𝜀 > 1, there exists𝑉 = (𝑉

1
, 𝑉
2
, . . . ,𝑉

𝑁
) ∈

S𝑁
𝑛+

with 𝑉 > 0 such thatL∗
𝐴/√𝜀,𝐶/√𝜀

(𝑉) − 𝑉 < 0.

3.3. Essential Instability. Essential instability for stochastic
Itô systems was first proposed in [25]. In what follows, we
generalize this concept to Markov jump systems.

Definition 10. [A,C | P] is called essentially instable, if there
exists 𝜆 ∈ 𝜎(L

𝐴,𝐶
) such that |𝜆| > 1.

Next, we give a spectral criterion for essential instability
of system (1).The detailed proof can be given by following the
similar procedure of Theorem 1 [25].

Theorem 11. [A,C | P] is essentially instable if and only
if for any given ∀𝑊 = (𝑊

1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈ S𝑁

𝑛+
such that

𝑊 > 0, there exists a constant 𝛾 > 1 and a unique 𝑉 =

(𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑁
) ∈ S𝑁
𝑛
satisfying thatL

𝐴/√𝛾,𝐶/√𝛾
(𝑉)−𝑉 = 𝑊.

Moreover, there must exist an 𝑖 ∈ 𝑁 such that𝑉
𝑖
admits at least

one positive eigenvalue.

Example 12. Let 𝑁 = {1, 2}. Take the same transition
probability matrix and the same coefficient matrices as those
in Example 3. According to Definition 10, we claim that
[A,C | P] is essentially instable because of 9/8 ∈ 𝜎(L

𝐴,𝐶
).

4. Conclusions

In this paper, we have applied the technique of operator
spectrum to demonstrate some new aspects on the stability
of discrete-time Markov jump systems with multiplicative
noise. With the help of the spectra of a generalized Lyapunov
operator, we have distinguished three kinds of stochastic
stabilities and obtained their spectral criteria which are easy
to test. As one of our future works, we will focus on how to
use the proposed stability theories to devise the stochastic LQ
optimal control with convergence rate constraints, which still
remains open to date.
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