9,228 research outputs found

    Computing Scalable Multivariate Glocal Invariants of Large (Brain-) Graphs

    Full text link
    Graphs are quickly emerging as a leading abstraction for the representation of data. One important application domain originates from an emerging discipline called "connectomics". Connectomics studies the brain as a graph; vertices correspond to neurons (or collections thereof) and edges correspond to structural or functional connections between them. To explore the variability of connectomes---to address both basic science questions regarding the structure of the brain, and medical health questions about psychiatry and neurology---one can study the topological properties of these brain-graphs. We define multivariate glocal graph invariants: these are features of the graph that capture various local and global topological properties of the graphs. We show that the collection of features can collectively be computed via a combination of daisy-chaining, sparse matrix representation and computations, and efficient approximations. Our custom open-source Python package serves as a back-end to a Web-service that we have created to enable researchers to upload graphs, and download the corresponding invariants in a number of different formats. Moreover, we built this package to support distributed processing on multicore machines. This is therefore an enabling technology for network science, lowering the barrier of entry by providing tools to biologists and analysts who otherwise lack these capabilities. As a demonstration, we run our code on 120 brain-graphs, each with approximately 16M vertices and up to 90M edges.Comment: Published as part of 2013 IEEE GlobalSIP conferenc

    Analytic solutions to the accretion of a rotating finite cloud towards a central object - II. Schwarzschild spacetime

    Full text link
    We construct a general relativistic model for the accretion flow of a rotating finite cloud of non-interacting particles infalling onto a Schwarzschild black hole. The streamlines start at a spherical shell, where boundary conditions are fixed, and are followed down to the point at which they either cross the black hole horizon or become incorporated into an equatorial thin disc. Analytic expressions for the streamlines and the velocity field are given, in terms of Jacobi elliptic functions, under the assumptions of stationarity and ballistic motion. A novel approach allows us to describe all of the possible types of orbit with a single formula. A simple numerical scheme is presented for calculating the density field. This model is the relativistic generalisation of the Newtonian one developed by Mendoza, Tejeda, Nagel, 2009 and, due to its analytic nature, it can be useful in providing a benchmark for general relativistic hydrodynamical codes and for exploring the parameter space in applications involving accretion onto black holes when the approximations of steady state and ballistic motion are reasonable ones.Comment: 12 pages, 6 figures, references and minor changes added to match version accepted for publication in MNRA

    Proxy chain method and its application to scientific visualization

    Get PDF
    Journal ArticleWe present a method for combining multiple point-based constraints in haptic programming environments. Instead of using a single proxy point for haptic feedback, the method maintains a separate proxy for each constraint. The reaction force is computed by linking the proxies in a chain. Constraints are applied in sequential order, such that the proxy found in the current step becomes the probe for the next step in the chain. The advantage of the method over previous approaches is that the constraints are maintained precisely and the output is well-defined. We illustrate the method with examples from the domain of 3D scientific data visualization. Finally, we present the results of an experiment conducted to quantify the contribution of haptic guidance in two representative vector field exploration tasks

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms

    ENABLING TECHNIQUES FOR EXPRESSIVE FLOW FIELD VISUALIZATION AND EXPLORATION

    Get PDF
    Flow visualization plays an important role in many scientific and engineering disciplines such as climate modeling, turbulent combustion, and automobile design. The most common method for flow visualization is to display integral flow lines such as streamlines computed from particle tracing. Effective streamline visualization should capture flow patterns and display them with appropriate density, so that critical flow information can be visually acquired. In this dissertation, we present several approaches that facilitate expressive flow field visualization and exploration. First, we design a unified information-theoretic framework to model streamline selection and viewpoint selection as symmetric problems. Two interrelated information channels are constructed between a pool of candidate streamlines and a set of sample viewpoints. Based on these information channels, we define streamline information and viewpoint information to select best streamlines and viewpoints, respectively. Second, we present a focus+context framework to magnify small features and reduce occlusion around them while compacting the context region in a full view. This framework parititions the volume into blocks and deforms them to guide streamline repositioning. The desired deformation is formulated into energy terms and achieved by minimizing the energy function. Third, measuring the similarity of integral curves is fundamental to many tasks such as feature detection, pattern querying, streamline clustering and hierarchical exploration. We introduce FlowString that extracts shape invariant features from streamlines to form an alphabet of characters, and encodes each streamline into a string. The similarity of two streamline segments then becomes a specially designed edit distance between two strings. Leveraging the suffix tree, FlowString provides a string-based method for exploratory streamline analysis and visualization. A universal alphabet is learned from multiple data sets to capture basic flow patterns that exist in a variety of flow fields. This allows easy comparison and efficient query across data sets. Fourth, for exploration of vascular data sets, which contain a series of vector fields together with multiple scalar fields, we design a web-based approach for users to investigate the relationship among different properties guided by histograms. The vessel structure is mapped from the 3D volume space to a 2D graph, which allow more efficient interaction and effective visualization on websites. A segmentation scheme is proposed to divide the vessel structure based on a user specified property to further explore the distribution of that property over space

    Globally Distributed Energetic Neutral Atom Maps for the "Croissant" Heliosphere

    Full text link
    A recent study by Opher et al. (2015) suggested the heliosphere has a "croissant" shape, where the heliosheath plasma is confined by the toroidal solar magnetic field. The "croissant" heliosphere is in contrast to the classically accepted view of a comet-like tail. We investigate the effect of the "croissant" heliosphere model on energetic neutral atom (ENA) maps. Regardless of the existence of a split tail, the confinement of the heliosheath plasma should appear in ENA maps. ENA maps from the Interstellar Boundary Explorer (IBEX) have shown two high latitude lobes with excess ENA flux at higher energies in the tail of the heliosphere. These lobes could be a signature of the confinement of the heliosheath plasma, while some have argued they are caused by the fast/slow solar wind profile. Here we present ENA maps of the "croissant" heliosphere, focusing on understanding the effect of the heliosheath plasma collimation by the solar magnetic field while using a uniform solar wind. We incorporate pick-up ions (PUIs) into our model based on Malama et al. (2006) and Zank et al. (2010). We use the neutral solution from our MHD model to determine the angular variation of the PUIs, and include the extinction of PUIs in the heliosheath. In the presence of a uniform solar wind, we find that the collimation in the "croissant" heliosphere does manifest itself into two high latitude lobes of increased ENA flux in the downwind direction.Comment: 14 pages, 1 table, 7 figures, Accepted for publication in Ap
    corecore