8,160 research outputs found

    Hierarchy and assortativity as new tools for affinity investigation: the case of the TBA aptamer-ligand complex

    Full text link
    Aptamers are single stranded DNA, RNA or peptide sequences having the ability to bind a variety of specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually they are in vitro generated, but, recently, computational approaches have been developed for the in silico selection, with a higher affinity for the specific target. Anyway, the mechanism of aptamer-ligand formation is not completely clear, and not obvious to predict. This paper aims to develop a computational model able to describe aptamer-ligand affinity performance by using the topological structure of the corresponding graphs, assessed by means of numerical tools such as the conventional degree distribution, but also the rank-degree distribution (hierarchy) and the node assortativity. Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex, produced in the presence of Na+ or K+. The topological analysis reveals different affinity performances between the macromolecules in the presence of the two cations, as expected by previous investigations in literature. These results nominate the graph topological analysis as a novel theoretical tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, which reveals that the resistance sensitively depends on the presence of sodium or potassium thus posing resistance as a crucial physical parameter for testing affinity.Comment: 12 pages, 5 figure

    Knowledge Extraction from Textual Resources through Semantic Web Tools and Advanced Machine Learning Algorithms for Applications in Various Domains

    Get PDF
    Nowadays there is a tremendous amount of unstructured data, often represented by texts, which is created and stored in variety of forms in many domains such as patients' health records, social networks comments, scientific publications, and so on. This volume of data represents an invaluable source of knowledge, but unfortunately it is challenging its mining for machines. At the same time, novel tools as well as advanced methodologies have been introduced in several domains, improving the efficacy and the efficiency of data-based services. Following this trend, this thesis shows how to parse data from text with Semantic Web based tools, feed data into Machine Learning methodologies, and produce services or resources to facilitate the execution of some tasks. More precisely, the use of Semantic Web technologies powered by Machine Learning algorithms has been investigated in the Healthcare and E-Learning domains through not yet experimented methodologies. Furthermore, this thesis investigates the use of some state-of-the-art tools to move data from texts to graphs for representing the knowledge contained in scientific literature. Finally, the use of a Semantic Web ontology and novel heuristics to detect insights from biological data in form of graph are presented. The thesis contributes to the scientific literature in terms of results and resources. Most of the material presented in this thesis derives from research papers published in international journals or conference proceedings

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    High-precision high-coverage functional inference from integrated data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information obtained from diverse data sources can be combined in a principled manner using various machine learning methods to increase the reliability and range of knowledge about protein function. The result is a weighted functional linkage network (FLN) in which linked neighbors share at least one function with high probability. Precision is, however, low. Aiming to provide precise functional annotation for as many proteins as possible, we explore and propose a two-step framework for functional annotation (1) construction of a high-coverage and reliable FLN via machine learning techniques (2) development of a decision rule for the constructed FLN to optimize functional annotation.</p> <p>Results</p> <p>We first apply this framework to <it>Saccharomyces cerevisiae</it>. In the first step, we demonstrate that four commonly used machine learning methods, Linear SVM, Linear Discriminant Analysis, NaĂŻve Bayes, and Neural Network, all combine heterogeneous data to produce reliable and high-coverage FLNs, in which the linkage weight more accurately estimates functional coupling of linked proteins than use individual data sources alone. In the second step, empirical tuning of an adjustable decision rule on the constructed FLN reveals that basing annotation on maximum edge weight results in the most precise annotation at high coverages. In particular at low coverage all rules evaluated perform comparably. At coverage above approximately 50%, however, they diverge rapidly. At full coverage, the maximum weight decision rule still has a precision of approximately 70%, whereas for other methods, precision ranges from a high of slightly more than 30%, down to 3%. In addition, a scoring scheme to estimate the precisions of individual predictions is also provided. Finally, tests of the robustness of the framework indicate that our framework can be successfully applied to less studied organisms.</p> <p>Conclusion</p> <p>We provide a general two-step function-annotation framework, and show that high coverage, high precision annotations can be achieved by constructing a high-coverage and reliable FLN via data integration followed by applying a maximum weight decision rule.</p

    A NEW METHODOLOGY FOR IDENTIFYING INTERFACE RESIDUES INVOLVED IN BINDING PROTEIN COMPLEXES

    Get PDF
    Genome-sequencing projects with advanced technologies have rapidly increased the amount of protein sequences, and demands for identifying protein interaction sites are significantly increased due to its impact on understanding cellular process, biochemical events and drug design studies. However, the capacity of current wet laboratory techniques is not enough to handle the exponentially growing protein sequence data; therefore, sequence based predictive methods identifying protein interaction sites have drawn increasing interest. In this article, a new predictive model which can be valuable as a first approach for guiding experimental methods investigating protein-protein interactions and localizing the specific interface residues is proposed. The proposed method extracts a wide range of features from protein sequences. Random forests framework is newly redesigned to effectively utilize these features and the problems of imbalanced data classification commonly encountered in binding site predictions. The method is evaluated with 2,829 interface residues and 24,616 non-interface residues extracted from 99 polypeptide chains in the Protein Data Bank. The experimental results show that the proposed method performs significantly better than two other conventional predictive methods and can reliably predict residues involved in protein interaction sites. As blind tests, the proposed method predicts interaction sites and constructs three protein complexes: the DnaK molecular chaperone system, 1YUW and 1DKG, which provide new insight into the sequence-function relationship. Finally, the robustness of the proposed method is assessed by evaluating the performances obtained from four different ensemble methods

    Link communities reveal multiscale complexity in networks

    Full text link
    Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.Comment: Main text and supplementary informatio
    • …
    corecore