27,896 research outputs found

    How Can Network-Pharmacology Contribute to Antiepileptic Drug Development?

    Get PDF
    Network-pharmacology is a field of pharmacology emerging from the observation that most clinical drugs have multiple targets, contrasting with the previously dominant magic bullet paradigm which proposed the search of exquisitely selective drugs. What is more, drug targets are often involved in multiple diseases and frequently present co-expression patterns. Therefore, useful therapeutic information can be drawn from network representations of drug targets. Here, we discuss potential applications of drug-target networks in the field of antiepileptic drug development.Fil: Di Ianni, Mauricio Emiliano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias BiolĂłgicas. CĂĄtedra de QuĂ­mica Medicinal; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Talevi, Alan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias BiolĂłgicas. CĂĄtedra de QuĂ­mica Medicinal; Argentin

    Therapeutic Considerations Related to Finasteride Administration in Male Androgenic Alopecia and Benign Prostatic Hyperplasia

    Get PDF
    Finasteride has been used extensively until now as a relative efficient therapeutic option for male androgenic alopecia and benign prostatic hyperplasia. Unfortunately, over time several concerns appeared regarding the frequency and magnitude of adverse effects, which in some cases have been even irreversible. Herein we review the recent literature on this topic, trying to clarify the current safety profile of Finasteride for these two therapeutic indications. We concluded that Finasteride could be retained as a therapeutic approach for male androgenic alopecia, based on two important reasons. First, a synergistic action between a partial inhibitor of 5α-reductase (Finasteride) and another compound (like Minoxidil) are preferable to a complete suppression of 5α-reductase (see Dutasteride), in order to preserve the important physiological roles of dihydrotestosterone. Second, Finasteride side effects can currently be addressed in part prior to the onset of the therapy, by using information about the patient such as hand preference and sexual orientation to predict the risk of adverse effects

    Pharmacological effects of raas blockade in ischemic nephropathy

    Get PDF
    Background: The management of ischemic nephropathy due to atherosclerotic renal artery stenosis has become increasingly conservative in the modern era, with current guidelines recommending optimized medical therapy as the initial step. The doubts raised by the recently published trials of revascularization strategies have led to a renewed focus on pharmacological strategies promoting blood pressure control and renal protection. It is essential to further elucidate the pathophysiological mechanisms underlying hypoperfusion induced renal microvascular dysfunction with subsequent tissue injury and fibrogenesis. The role of renin angiotensin aldosterone system as a mediator of the main pathophysiological consequences of ischemic nephropathy is well known. However, more recent experimental evidence on the adrenergic system and intrarenal tubular feedback mechanisms has stimulated new interest towards a multi-target therapeutic approach. Methods: This review focuses on the pharmacology of the principle therapeutic drug classes currently used in the treatment of atherosclerotic renal artery stenosis with an analysis of their metabolic aspects and use in clinical practice based on evidence from clinical trials. Results and Conclusions: An optimal pharmacologic approach is crucial for a successful prevention of renal injury and cardiovascular events in this high-risk population. Antihypertensive treatment should include renin angiotensin aldosterone system blockade medication not only for their antihypertensive properties, but especially for those cardio and renoprotectiv

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    A Breath of Fresh Air? Firm types, scale, scope and selection effects in drug development

    Get PDF
    This paper measures differences in the innovation performance of different types of firms in the pharmaceutical industry. We compare the innovation performance of incumbent firms with entrants, controlling for differences in the scale and scope of research, both at the firm level and at the project level. To do so, we develop a simple analytical framework of drug development, which we use to estimate a structural model, using data on 3,000 drug R&D projects in preclinical and clinical trials in the US during the 1980s-early 1990s. Key to our approach is a careful attention to the issue of selection – firms choose which compounds to advance into clinical trials. This choice depends upon the likelihood of success, but also upon economies of scale and scope, and strategic considerations about product cannibalization. It also depends upon how the costs of development and the rewards of success are shared within organizations and between alliance partners. After controlling for selection, we find that: a) incumbent pharmaceutical firms draw their compounds from better statistical distributions; b) over time, learning or environmental selection make entrants firms more similar to the established firms both in terms of selection behavior and research productivity; c) compounds licensed by pharmaceutical firms are at least as likely to succeed as internal developed projects, inconsistent with the “lemons” hypothesis; d) firm scale improves innovation performance but not scale at the project level.firm capabilities; drug development process; market for technology

    Analysis of the human diseasome reveals phenotype modules across common, genetic, and infectious diseases

    Get PDF
    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text- mining approach to identify the phenotypes (signs and symptoms) associated with over 8,000 diseases. We demonstrate that our method generates phenotypes that correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that share signs and symptoms cluster together, and we use this network to identify phenotypic disease modules

    Proteasome Inhibitors: Harnessing Proteostasis to Combat Disease

    Get PDF
    The proteasome is the central component of the main cellular protein degradation pathway. During the past four decades, the critical function of the proteasome in numerous physiological processes has been revealed, and proteasome activity has been linked to various human diseases. The proteasome prevents the accumulation of misfolded proteins, controls the cell cycle, and regulates the immune response, to name a few important roles for this macromolecular “machine.” As a therapeutic target, proteasome inhibitors have been approved for the treatment of multiple myeloma and mantle cell lymphoma. However, inability to sufficiently inhibit proteasome activity at tolerated doses has hampered efforts to expand the scope of proteasome inhibitor-based therapies. With emerging new modalities in myeloma, it might seem challenging to develop additional proteasome-based therapies. However, the constant development of new applications for proteasome inhibitors and deeper insights into the intricacies of protein homeostasis suggest that proteasome inhibitors might have novel therapeutic applications. Herein, we summarize the latest advances in proteasome inhibitor development and discuss the future of proteasome inhibitors and other proteasome-based therapies in combating human diseases

    Informed consent decision-making in deep brain stimulation

    Get PDF
    Deep brain stimulation (DBS) has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia), in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases

    Use of Medicinal Cannabis and Synthetic Cannabinoids in Posttraumatic Stress Disorder (PTSD): a systematic review

    Get PDF
    Background and Objectives: Post-traumatic stress disorder (PTSD) is a common psychiatric disorder resulting from a traumatic event, is manifested through hyperarousal, anxiety, depressive symptoms, and sleep disturbances. Despite several therapeutic approaches being available, both pharmacological and psychological, recently a growing interest has developed in using cannabis and synthetic cannabinoids stems from their consideration as more efficient and better tolerated alternatives for the treatment of this condition. The present paper aims to evaluate the clinical and therapeutic potentials of medical cannabis and synthetic cannabinoids in treating PTSD patients. Methods: A systematic electronic search was performed, including all papers published up to May 2019, using the following keywords (((cannabis[Title/Abstract]) OR (synthetic cannabinoids [Title/Abstract])) AND ((PTSD[Title/Abstract]) OR (Posttraumatic stress disorder[Title/Abstract]))) for the topics ‘Cannabis’, ‘Synthetic Cannabinoids’, ‘PTSD’, and MESH terms, on the PubMed, Cochrane Library, and Web of Science online databases. For data gathering purposes, PRISMA guidelines were followed. Results were organized into two groups, considering cannabis and synthetic cannabinoids as different therapeutic approaches for PTSD. Results: Present data show that cannabis and synthetic cannabinoids, both acting on the endocannabinoids system, may have a potential therapeutic use for improving PTSD symptoms, e.g., reducing anxiety, modulating memory-related processes, and improving sleep. Conclusions: Even though the current literature suggests that cannabis and synthetic cannabinoids may have a role in the treatment of PTSD, there is currently limited evidence regarding their safety and efficacy. Therefore, additional research is needed in order to better understand the effectiveness and therapeutic usage of these drug classes and monitor their safety.Peer reviewe
    • 

    corecore