5,051 research outputs found

    Control of coupled oscillator networks with application to microgrid technologies

    Get PDF
    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies we study here control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions--a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. Interestingly, the amount of control, i.e., number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself

    Optimal global synchronization of partially forced Kuramoto oscillators

    Full text link
    We consider the problem of global synchronization in a large random network of Kuramoto oscillators where some of them are subject to an external periodically driven force. We explore a recently proposed dimensional reduction approach and introduce an effective two-dimensional description for the problem. From the dimensionally reduced model, we obtain analytical predictions for some critical parameters necessary for the onset of a globally synchronized state in the system. Moreover, the low dimensional model also allows us to introduce an optimization scheme for the problem. Our main conclusion, which has been corroborated by exhaustive numerical simulations, is that for a given large random network of Kuramoto oscillators, with random natural frequencies ωi\omega_i, such that a fraction of them is subject to an external periodic force with frequency Ω\Omega, the best global synchronization properties correspond to the case where the fraction of the forced oscillators is chosen to be those ones such that ∣ωi−Ω∣|\omega_i-\Omega| is maximal. Our results might shed some light on the structure and evolution of natural systems for which the presence or the absence of global synchronization are desired properties. Some properties of the optimal forced networks and its relation to recent results in the literature are also discussed.Comment: 8 pages, 3 figures. Final version accepted for publication in Chaos. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals

    Synchronization is optimal in non-diagonalizable networks

    Full text link
    We consider the problem of maximizing the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. We first extend the well-known master stability formalism to the case of non-diagonalizable networks. We then show that, unless some oscillator is connected to all the others, networks of maximum synchronizability are necessarily non-diagonalizable and can always be obtained by imposing unidirectional information flow with normalized input strengths. The extension makes the formalism applicable to all possible network structures, while the maximization results provide insights into hierarchical structures observed in complex networks in which synchronization plays a significant role.Comment: 4 pages, 1 figure; minor revisio
    • …
    corecore