440 research outputs found

    EDACs and test integration strategies for NAND flash memories

    Get PDF
    Mission-critical applications usually presents several critical issues: the required level of dependability of the whole mission always implies to address different and contrasting dimensions and to evaluate the tradeoffs among them. A mass-memory device is always needed in all mission-critical applications: NAND flash-memories could be used for this goal. Error Detection And Correction (EDAC) techniques are needed to improve dependability of flash-memory devices. However also testing strategies need to be explored in order to provide highly dependable systems. Integrating these two main aspects results in providing a fault-tolerant mass-memory device, but no systematic approach has so far been proposed to consider them as a whole. As a consequence a novel strategy integrating a particular code-based design environment with newly selected testing strategies is presented in this pape

    FLARE: A design environment for FLASH-based space applications

    Get PDF
    Designing a mass-memory device (i.e., a solid-state recorder) is one of the typical issues of mission-critical space system applications. Flash-memories could be used for this goal: a huge number of parameters and trade-offs need to be explored. Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawback: e.g., their cost is higher than normal hard disk and the number of erasure cycles is bounded. Moreover space environment presents various issues especially because of radiations: different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid-state recorder. No systematic approach has so far been proposed to consider them all as a whole: as a consequence a novel design environment currently under development is aimed at supporting the design of flash-based mass-memory device for space application

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space application
    corecore