18,778 research outputs found

    Switcher-random-walks: a cognitive-inspired mechanism for network exploration

    Full text link
    Semantic memory is the subsystem of human memory that stores knowledge of concepts or meanings, as opposed to life specific experiences. The organization of concepts within semantic memory can be understood as a semantic network, where the concepts (nodes) are associated (linked) to others depending on perceptions, similarities, etc. Lexical access is the complementary part of this system and allows the retrieval of such organized knowledge. While conceptual information is stored under certain underlying organization (and thus gives rise to a specific topology), it is crucial to have an accurate access to any of the information units, e.g. the concepts, for efficiently retrieving semantic information for real-time needings. An example of an information retrieval process occurs in verbal fluency tasks, and it is known to involve two different mechanisms: -clustering-, or generating words within a subcategory, and, when a subcategory is exhausted, -switching- to a new subcategory. We extended this approach to random-walking on a network (clustering) in combination to jumping (switching) to any node with certain probability and derived its analytical expression based on Markov chains. Results show that this dual mechanism contributes to optimize the exploration of different network models in terms of the mean first passage time. Additionally, this cognitive inspired dual mechanism opens a new framework to better understand and evaluate exploration, propagation and transport phenomena in other complex systems where switching-like phenomena are feasible.Comment: 9 pages, 3 figures. Accepted in "International Journal of Bifurcations and Chaos": Special issue on "Modelling and Computation on Complex Networks

    Estimating graph parameters with random walks

    Full text link
    An algorithm observes the trajectories of random walks over an unknown graph GG, starting from the same vertex xx, as well as the degrees along the trajectories. For all finite connected graphs, one can estimate the number of edges mm up to a bounded factor in O(trel3/4m/d)O\left(t_{\mathrm{rel}}^{3/4}\sqrt{m/d}\right) steps, where trelt_{\mathrm{rel}} is the relaxation time of the lazy random walk on GG and dd is the minimum degree in GG. Alternatively, mm can be estimated in O(tunif+trel5/6n)O\left(t_{\mathrm{unif}} +t_{\mathrm{rel}}^{5/6}\sqrt{n}\right), where nn is the number of vertices and tunift_{\mathrm{unif}} is the uniform mixing time on GG. The number of vertices nn can then be estimated up to a bounded factor in an additional O(tunifmn)O\left(t_{\mathrm{unif}}\frac{m}{n}\right) steps. Our algorithms are based on counting the number of intersections of random walk paths X,YX,Y, i.e. the number of pairs (t,s)(t,s) such that Xt=YsX_t=Y_s. This improves on previous estimates which only consider collisions (i.e., times tt with Xt=YtX_t=Y_t). We also show that the complexity of our algorithms is optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show that, given either mm or the mixing time of GG, we can compute the "other parameter" with a self-stopping algorithm

    Estimating and Sampling Graphs with Multidimensional Random Walks

    Full text link
    Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new mm-dimensional random walk that uses mm dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph
    • …
    corecore