5 research outputs found

    Long-Term Prediction of Natural Video Sequences with Robust Video Predictors

    Full text link
    Predicting high dimensional video sequences is a curiously difficult problem. The number of possible futures for a given video sequence grows exponentially over time due to uncertainty. This is especially evident when trying to predict complicated natural video scenes from a limited snapshot of the world. The inherent uncertainty accumulates the further into the future you predict making long-term prediction very difficult. In this work we introduce a number of improvements to existing work that aid in creating Robust Video Predictors (RoViPs). We show that with a combination of deep Perceptual and uncertainty-based reconstruction losses we are able to create high quality short-term predictions. Attention-based skip connections are utilised to allow for long range spatial movement of input features to further improve performance. Finally, we show that by simply making the predictor robust to its own prediction errors, it is possible to produce very long, realistic natural video sequences using an iterated single-step prediction task

    Model-Based Reinforcement Learning with Isolated Imaginations

    Full text link
    World models learn the consequences of actions in vision-based interactive systems. However, in practical scenarios like autonomous driving, noncontrollable dynamics that are independent or sparsely dependent on action signals often exist, making it challenging to learn effective world models. To address this issue, we propose Iso-Dream++, a model-based reinforcement learning approach that has two main contributions. First, we optimize the inverse dynamics to encourage the world model to isolate controllable state transitions from the mixed spatiotemporal variations of the environment. Second, we perform policy optimization based on the decoupled latent imaginations, where we roll out noncontrollable states into the future and adaptively associate them with the current controllable state. This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild, such as self-driving cars that can anticipate the movement of other vehicles, thereby avoiding potential risks. On top of our previous work, we further consider the sparse dependencies between controllable and noncontrollable states, address the training collapse problem of state decoupling, and validate our approach in transfer learning setups. Our empirical study demonstrates that Iso-Dream++ outperforms existing reinforcement learning models significantly on CARLA and DeepMind Control.Comment: arXiv admin note: substantial text overlap with arXiv:2205.1381

    Conditional generative modeling for images, 3D animations, and video

    Full text link
    Generative modeling for computer vision has shown immense progress in the last few years, revolutionizing the way we perceive, understand, and manipulate visual data. This rapidly evolving field has witnessed advancements in image generation, 3D animation, and video prediction that unlock diverse applications across multiple fields including entertainment, design, healthcare, and education. As the demand for sophisticated computer vision systems continues to grow, this dissertation attempts to drive innovation in the field by exploring novel formulations of conditional generative models, and innovative applications in images, 3D animations, and video. Our research focuses on architectures that offer reversible transformations of noise and visual data, and the application of encoder-decoder architectures for generative tasks and 3D content manipulation. In all instances, we incorporate conditional information to enhance the synthesis of visual data, improving the efficiency of the generation process as well as the generated content. Prior successful generative techniques which are reversible between noise and data include normalizing flows and denoising diffusion models. The continuous variant of normalizing flows is powered by Neural Ordinary Differential Equations (Neural ODEs), and have shown some success in modeling the real image distribution. However, they often involve huge number of parameters, and high training time. Denoising diffusion models have recently gained huge popularity for their generalization capabilities especially in text-to-image applications. In this dissertation, we introduce the use of Neural ODEs to model video dynamics using an encoder-decoder architecture, demonstrating their ability to predict future video frames despite being trained solely to reconstruct current frames. In our next contribution, we propose a conditional variant of continuous normalizing flows that enables higher-resolution image generation based on lower-resolution input. This allows us to achieve comparable image quality to regular normalizing flows, while significantly reducing the number of parameters and training time. Our next contribution focuses on a flexible encoder-decoder architecture for accurate estimation and editing of full 3D human pose. We present a comprehensive pipeline that takes human images as input, automatically aligns a user-specified 3D human/non-human character with the pose of the human, and facilitates pose editing based on partial input information. We then proceed to use denoising diffusion models for image and video generation. Regular diffusion models involve the use of a Gaussian process to add noise to clean images. In our next contribution, we derive the relevant mathematical details for denoising diffusion models that use non-isotropic Gaussian processes, present non-isotropic noise, and show that the quality of generated images is comparable with the original formulation. In our final contribution, devise a novel framework building on denoising diffusion models that is capable of solving all three video tasks of prediction, generation, and interpolation. We perform ablation studies using this framework, and show state-of-the-art results on multiple datasets. Our contributions are published articles at peer-reviewed venues. Overall, our research aims to make a meaningful contribution to the pursuit of more efficient and flexible generative models, with the potential to shape the future of computer vision.La modélisation générative pour la vision par ordinateur a connu d’immenses progrès ces dernières années, révolutionnant notre façon de percevoir, comprendre et manipuler les données visuelles. Ce domaine en constante évolution a connu des avancées dans la génération d’images, l’animation 3D et la prédiction vidéo, débloquant ainsi diverses applications dans plusieurs domaines tels que le divertissement, le design, la santé et l’éducation. Alors que la demande de systèmes de vision par ordinateur sophistiqués ne cesse de croître, cette thèse s’efforce de stimuler l’innovation dans le domaine en explorant de nouvelles formulations de modèles génératifs conditionnels et des applications innovantes dans les images, les animations 3D et la vidéo. Notre recherche se concentre sur des architectures offrant des transformations réversibles du bruit et des données visuelles, ainsi que sur l’application d’architectures encodeur-décodeur pour les tâches génératives et la manipulation de contenu 3D. Dans tous les cas, nous incorporons des informations conditionnelles pour améliorer la synthèse des données visuelles, améliorant ainsi l’efficacité du processus de génération ainsi que le contenu généré. Les techniques génératives antérieures qui sont réversibles entre le bruit et les données et qui ont connu un certain succès comprennent les flux de normalisation et les modèles de diffusion de débruitage. La variante continue des flux de normalisation est alimentée par les équations différentielles ordinaires neuronales (Neural ODEs) et a montré une certaine réussite dans la modélisation de la distribution d’images réelles. Cependant, elles impliquent souvent un grand nombre de paramètres et un temps d’entraînement élevé. Les modèles de diffusion de débruitage ont récemment gagné énormément en popularité en raison de leurs capacités de généralisation, notamment dans les applications de texte vers image. Dans cette thèse, nous introduisons l’utilisation des Neural ODEs pour modéliser la dynamique vidéo à l’aide d’une architecture encodeur-décodeur, démontrant leur capacité à prédire les images vidéo futures malgré le fait d’être entraînées uniquement à reconstruire les images actuelles. Dans notre prochaine contribution, nous proposons une variante conditionnelle des flux de normalisation continus qui permet une génération d’images à résolution supérieure à partir d’une entrée à résolution inférieure. Cela nous permet d’obtenir une qualité d’image comparable à celle des flux de normalisation réguliers, tout en réduisant considérablement le nombre de paramètres et le temps d’entraînement. Notre prochaine contribution se concentre sur une architecture encodeur-décodeur flexible pour l’estimation et l’édition précises de la pose humaine en 3D. Nous présentons un pipeline complet qui prend des images de personnes en entrée, aligne automatiquement un personnage 3D humain/non humain spécifié par l’utilisateur sur la pose de la personne, et facilite l’édition de la pose en fonction d’informations partielles. Nous utilisons ensuite des modèles de diffusion de débruitage pour la génération d’images et de vidéos. Les modèles de diffusion réguliers impliquent l’utilisation d’un processus gaussien pour ajouter du bruit aux images propres. Dans notre prochaine contribution, nous dérivons les détails mathématiques pertinents pour les modèles de diffusion de débruitage qui utilisent des processus gaussiens non isotropes, présentons du bruit non isotrope, et montrons que la qualité des images générées est comparable à la formulation d’origine. Dans notre dernière contribution, nous concevons un nouveau cadre basé sur les modèles de diffusion de débruitage, capable de résoudre les trois tâches vidéo de prédiction, de génération et d’interpolation. Nous réalisons des études d’ablation en utilisant ce cadre et montrons des résultats de pointe sur plusieurs ensembles de données. Nos contributions sont des articles publiés dans des revues à comité de lecture. Dans l’ensemble, notre recherche vise à apporter une contribution significative à la poursuite de modèles génératifs plus efficaces et flexibles, avec le potentiel de façonner l’avenir de la vision par ordinateur
    corecore