11,430 research outputs found

    Cooperative Secure Transmission by Exploiting Social Ties in Random Networks

    Full text link
    Social awareness and social ties are becoming increasingly popular with emerging mobile and handheld devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in many fields in wireless communications, such as resource sharing, cooperative communication and so on. In this paper, we propose a hybrid cooperative beamforming and jamming scheme to secure communication based on the social trust degree under a stochastic geometry framework. The friendly nodes are categorized into relays and jammers according to their locations and social trust degrees with the source node. We aim to analyze the involved connection outage probability (COP) and secrecy outage probability (SOP) of the performance in the networks. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma approximation. Based on this, the COP and SOP are tractably obtained in closed-form. We further consider the SOP in the presence of Poisson Point Process (PPP) distributed eavesdroppers and derive an upper bound. The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic influences on the security performance in the networks.Comment: 30 pages, 11 figures, to be published in IEEE Transactions on Communication

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Social Data Offloading in D2D-Enhanced Cellular Networks by Network Formation Games

    Full text link
    Recently, cellular networks are severely overloaded by social-based services, such as YouTube, Facebook and Twitter, in which thousands of clients subscribe a common content provider (e.g., a popular singer) and download his/her content updates all the time. Offloading such traffic through complementary networks, such as a delay tolerant network formed by device-to-device (D2D) communications between mobile subscribers, is a promising solution to reduce the cellular burdens. In the existing solutions, mobile users are assumed to be volunteers who selfishlessly deliver the content to every other user in proximity while moving. However, practical users are selfish and they will evaluate their individual payoffs in the D2D sharing process, which may highly influence the network performance compared to the case of selfishless users. In this paper, we take user selfishness into consideration and propose a network formation game to capture the dynamic characteristics of selfish behaviors. In the proposed game, we provide the utility function of each user and specify the conditions under which the subscribers are guaranteed to converge to a stable network. Then, we propose a practical network formation algorithm in which the users can decide their D2D sharing strategies based on their historical records. Simulation results show that user selfishness can highly degrade the efficiency of data offloading, compared with ideal volunteer users. Also, the decrease caused by user selfishness can be highly affected by the cost ratio between the cellular transmission and D2D transmission, the access delays, and mobility patterns

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Offloading in Software Defined Network at Edge with Information Asymmetry: A Contract Theoretical Approach

    Full text link
    The proliferation of highly capable mobile devices such as smartphones and tablets has significantly increased the demand for wireless access. Software defined network (SDN) at edge is viewed as one promising technology to simplify the traffic offloading process for current wireless networks. In this paper, we investigate the incentive problem in SDN-at-edge of how to motivate a third party access points (APs) such as WiFi and smallcells to offload traffic for the central base stations (BSs). The APs will only admit the traffic from the BS under the precondition that their own traffic demand is satisfied. Under the information asymmetry that the APs know more about own traffic demands, the BS needs to distribute the payment in accordance with the APs' idle capacity to maintain a compatible incentive. First, we apply a contract-theoretic approach to model and analyze the service trading between the BS and APs. Furthermore, other two incentive mechanisms: optimal discrimination contract and linear pricing contract are introduced to serve as the comparisons of the anti adverse selection contract. Finally, the simulation results show that the contract can effectively incentivize APs' participation and offload the cellular network traffic. Furthermore, the anti adverse selection contract achieves the optimal outcome under the information asymmetry scenario.Comment: 10 pages, 9 figure
    • …
    corecore