185 research outputs found

    Time-slice analysis of dyadic human activity

    Get PDF
    La reconnaissance d’activités humaines à partir de données vidéo est utilisée pour la surveillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif est de classer les vidéos dans l’une des k classes d’actions à partir de vidéos entièrement observées. Cependant, de tout temps, les systèmes intelligents sont améliorés afin de prendre des décisions basées sur des incertitudes et ou des informations incomplètes. Ce besoin nous motive à introduire le problème de l’analyse de l’incertitude associée aux activités humaines et de pouvoir passer à un nouveau niveau de généralité lié aux problèmes d’analyse d’actions. Nous allons également présenter le problème de reconnaissance d’activités par intervalle de temps, qui vise à explorer l’activité humaine dans un intervalle de temps court. Il a été démontré que l’analyse par intervalle de temps est utile pour la caractérisation des mouvements et en général pour l’analyse de contenus vidéo. Ces études nous encouragent à utiliser ces intervalles de temps afin d’analyser l’incertitude associée aux activités humaines. Nous allons détailler à quel degré de certitude chaque activité se produit au cours de la vidéo. Dans cette thèse, l’analyse par intervalle de temps d’activités humaines avec incertitudes sera structurée en 3 parties. i) Nous présentons une nouvelle famille de descripteurs spatiotemporels optimisés pour la prédiction précoce avec annotations d’intervalle de temps. Notre représentation prédictive du point d’intérêt spatiotemporel (Predict-STIP) est basée sur l’idée de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour extraire des points d’intérêts afin de représenter ces intervalles de temps. iii) Nous utilisons des relations (uniformes et par paires) basées sur les réseaux neuronaux convolutionnels entre les différentes parties du corps de l’individu dans chaque intervalle de temps. Les relations uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les spécificités de chaque image dans l’intervalle de temps et examinons différentes façons de les agréger temporellement afin de générer un descripteur pour tout l’intervalle de temps. En outre, nous créons une nouvelle base de données qui est annotée à de multiples intervalles de temps courts, permettant la modélisation de l’incertitude inhérente à la reconnaissance d’activités par intervalle de temps. Les résultats expérimentaux montrent l’efficience de notre stratégie dans l’analyse des mouvements humains avec incertitude.Recognizing human activities from video data is routinely leveraged for surveillance and human-computer interaction applications. The main focus has been classifying videos into one of k action classes from fully observed videos. However, intelligent systems must to make decisions under uncertainty, and based on incomplete information. This need motivates us to introduce the problem of analysing the uncertainty associated with human activities and move to a new level of generality in the action analysis problem. We also present the problem of time-slice activity recognition which aims to explore human activity at a small temporal granularity. Time-slice recognition is able to infer human behaviours from a short temporal window. It has been shown that temporal slice analysis is helpful for motion characterization and for video content representation in general. These studies motivate us to consider timeslices for analysing the uncertainty associated with human activities. We report to what degree of certainty each activity is occurring throughout the video from definitely not occurring to definitely occurring. In this research, we propose three frameworks for time-slice analysis of dyadic human activity under uncertainty. i) We present a new family of spatio-temporal descriptors which are optimized for early prediction with time-slice action annotations. Our predictive spatiotemporal interest point (Predict-STIP) representation is based on the intuition of temporal contingency between time-slices. ii) we exploit state-of-the art techniques to extract interest points in order to represent time-slices. We also present an accumulative uncertainty to depict the uncertainty associated with partially observed videos for the task of early activity recognition. iii) we use Convolutional Neural Networks-based unary and pairwise relations between human body joints in each time-slice. The unary term captures the local appearance of the joints while the pairwise term captures the local contextual relations between the parts. We extract these features from each frame in a time-slice and examine different temporal aggregations to generate a descriptor for the whole time-slice. Furthermore, we create a novel dataset which is annotated at multiple short temporal windows, allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the three methods have been evaluated on TAP dataset. Experimental results demonstrate the effectiveness of our framework in the analysis of dyadic activities under uncertaint

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results

    Learning space-time structures for action recognition and localization

    Get PDF
    In this thesis the problem of automatic human action recognition and localization in videos is studied. In this problem, our goal is to recognize the category of the human action that is happening in the video, and also to localize the action in space and/or time. This problem is challenging due to the complexity of the human actions, the large intra-class variations and the distraction of backgrounds. Human actions are inherently structured patterns of body movements. However, past works are inadequate in learning the space-time structures in human actions and exploring them for better recognition and localization. In this thesis new methods are proposed that exploit such space-time structures for effective human action recognition and localization in videos, including sports videos, YouTube videos, TV programs and movies. A new local space-time video representation, the hierarchical Space-Time Segments, is first proposed. Using this new video representation, ensembles of hierarchical spatio-temporal trees, discovered directly from the training videos, are constructed to model the hierarchical, spatial and temporal structures of human actions. This proposed approach achieves promising performances in action recognition and localization on challenging benchmark datasets. Moreover, the discovered trees show good cross-dataset generalizability: trees learned on one dataset can be used to recognize and localize similar actions in another dataset. To handle large scale data, a deep model is explored that learns temporal progression of the actions using Long Short Term Memory (LSTM), which is a type of Recurrent Neural Network (RNN). Two novel ranking losses are proposed to train the model to better capture the temporal structures of actions for accurate action recognition and temporal localization. This model achieves state-of-art performance on a large scale video dataset. A deep model usually employs a Convolutional Neural Network (CNN) to learn visual features from video frames. The problem of utilizing web action images for training a Convolutional Neural Network (CNN) is also studied: training CNN typically requires a large number of training videos, but the findings of this study show that web action images can be utilized as additional training data to significantly reduce the burden of video training data collection

    Semantic Model Vectors for Complex Video Event Recognition

    Full text link

    Analyzing Human-Human Interactions: A Survey

    Full text link
    Many videos depict people, and it is their interactions that inform us of their activities, relation to one another and the cultural and social setting. With advances in human action recognition, researchers have begun to address the automated recognition of these human-human interactions from video. The main challenges stem from dealing with the considerable variation in recording setting, the appearance of the people depicted and the coordinated performance of their interaction. This survey provides a summary of these challenges and datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection methods. We focus on recent, promising work based on deep learning and convolutional neural networks (CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze and, eventually, understand social human actions

    A Hybrid Model for Concurrent Interaction Recognition from Videos

    Get PDF
    Human behavior analysis plays an important role in understanding the high-level human activities from surveillance videos. Human behavior has been identified using gestures, postures, actions, interactions and multiple activities of humans. This paper has been analyzed by identifying concurrent interactions, that takes place between multiple peoples. In order to capture the concurrency, a hybrid model has been designed with the combination of Layered Hidden Markov Model (LHMM) and Coupled HMM (CHMM). The model has three layers called as pose layer, action layer and interaction layer, in which pose and action of the single person has been defined in the layered model and the interaction of two persons or multiple persons are defined using CHMM. This hybrid model reduces the training parameters and the temporal correlations over the frames are maintained. The spatial and temporal information are extracted and from the body part attributes, the simple human actions as well as concurrent actions/interactions are predicted. In addition, we further evaluated the results on various datasets also, for analyzing the concurrent interaction between the peoples
    • …
    corecore