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Abstract

Given the near-ubiquity of CCTV, there is significant ongoing research ef-

fort to apply image and video analysis methods together with machine learning

techniques towards autonomous analysis of such data sources. However, tradi-

tional approaches to scene understanding remain dependent on training based

on human annotations that need to be provided for every camera sensor. In this

thesis, we propose an unusual event detection and classification approach which

is applicable to real-world visual monitoring applications. The goal is to infer the

usual behaviours in the scene and to judge the normality of the scene on the basis

on the model created. The first requirement for the system is that it should not

demand annotated data to train the system. Annotation of the data is a laborious

task, and it is not feasible in practice to annotate video data for each camera as an

initial stage of event detection. Furthermore, even obtaining training examples for

the unusual event class is challenging due to the rarity of such events in video data.

Another requirement for the system is online generation of results. In surveillance

applications, it is essential to generate real-time results to allow a swift response

by a security operator to prevent harmful consequences of unusual and antisocial

events. The online learning capabilities also mean that the model can be continu-

ously updated to accommodate natural changes in the environment. The third

requirement for the system is the ability to run the process indefinitely. The men-

tioned requirements are necessary for real-world surveillance applications and

the approaches that conform to these requirements need to be investigated. This

thesis investigates unusual event detection methods that conform with real-world

requirements and investigates the issue through theoretical and experimental

study of machine learning and computer vision algorithms.
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Chapter 1

Introduction

1.1 Overview

Exploration of the unusual event detection in surveillance applications is based

on two main arguments. First, the number of security cameras is growing, and

monitoring of the cameras is becoming increasingly difficult. Second, most of the

solutions available to the public through commercialized products assume simple

visual environments, and when more challenging environments are introduced,

laborious and time intensive initialization procedures are required. One of the

initialization procedures typically applied is calibration. Calibration is performed

after a camera is mounted by mapping multiple points in a scene and recording

by capturing a consistent object such as a pole. The pole becomes a reference

object for a camera to help to determine the size of an average human being.

The usual expectation is that the field of view is not going to change dramati-

cally, including landscape, trees and other objects, and the camera will never be

repositioned during routine maintenance. A great amount of published research

has been dedicated to improving event detection and recognition techniques for

visual monitoring applications, but there has been little effort to consolidate them

for applications in real-world environments. The aim of this work is to fill the
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gap between the approaches found in the literature and real-world surveillance

applications and to propose and investigate solutions that work outside of the

laboratory. This chapter begins with a short history of visual surveillance. It

shows how surveillance systems worked when they were first introduced and

how they evolved with the introduction of video analytics. The current commer-

cial visual surveillance systems and the state-of-the-art techniques found in the

research literature are introduced. A break-down of the event detection task into

discrete steps is proposed together with the applicability of each step to real-world

applications. This chapter concludes with the hypotheses and contributions of

this work.

1.2 Motivation

Video surveillance has undergone phenomenal growth since its introduction. For

example, the introduction of CCTV cameras for public security in London, UK,

started in the early sixties by placing two cameras in Trafalgar Square. By the

early nineties, the security infrastructures around London grew to a network

consisting of thousands of cameras. Currently there are more than more than

four million cameras in the UK according to the M. McCahill and C. Norris

report (McCahill and Norris, 2002). Similar examples of growth can be found

in the rest of the world as evident by reports for Canada (Dawson et al., 2009),

China (Kolekar, 2013), Australia (Wilson and Sutton, 2003). Such systems were

introduced to assist the police and security personnel in preventing crime. The

benefit of camera networks is clear: instead of having security or law enforcement

personnel stationed at every corner, huge territories can be monitored by a few

individuals from the control room. Even if an event is not identified at the time of

its occurrence, recorded data can be used to provide evidence of the crime and to

identify perpetrators and victims after the fact. The technology was effective in the
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nineties. However, due to technological advances and decreasing cost, security

cameras became affordable not only to governments and large corporations, but

also to small businesses and households. As a result, the number of cameras has

grown exponentially, e.g. in 2002 there were 4.2 million cameras in the UK —

approximately one for every 14 people (McCahill and Norris, 2002). Therefore,

the current issue is that many of the cameras are not being monitored by security

personnel, and the recorded footage is reviewed only after an accident or crime

has happened. Even when the cameras are monitored live, in most control rooms

one operator has to monitor multiple camera views at the same time. The fact

that attention has to be divided between multiple camera views makes it more

likely that an interesting event will be missed. Studies done by Sandia National

Laboratories for the U.S. Department of Energy (Goldgof et al., 2009) supported

this intuition and showed that after only 20 minutes of watching and evaluating

monitor screens, the attention of most individuals drops to well below acceptable

levels.

Due to the nature of certain video surveillance scenarios, some steps of the

event detection process can be automated to help prevent the security personnel

from missing events of interest. Many commercial systems now include analytic

software capable of some level of event detection that can trigger an alarm. The

most basic approach that can be applied to direct the attention of the security

personnel is motion detection. It can help to identify the periods when moving

objects are in the camera view and allow the periods when nothing happens

to be ignored. A more advanced approach is to implement an object tracking

algorithm. In addition to the allocation of attention to the interesting periods, it

gives information about the motion trajectory of an object in the scene. Lucas

and Kanade (1981a) proposed a kernel-based tracking algorithm which has a

number of variations, but is still widely used in object tracking applications. To

improve the accuracy of the motion detection and tracking results, video analytics
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software can allow the definition of the region-of-interest as well as the definition

of the attributes of the moving object that would trigger an alarm. What is more,

current video analytics technology allows retrieval of predefined events from

large amounts of video. The events are usually defined by motion in restricted

areas. Various alerts triggered by the pre-defined events can be disseminated

using text messaging, on-screen alerts, email, geocoded maps, and video. Video

storage can also be reduced significantly if the user chooses to record only during

such events. A comparison of surveillance video analytics capabilities can be

found in (Goldgof et al., 2009). Based on this analysis, a more comprehensive

list of commercial analytic systems can be seen in Table 1.1. This list shows the

video analytics companies targeting standard surveillance tasks that are usually

performed by security personnel such as: detection of loitering, perimeter breach,

detection of unattended object. In addition to that, some of the applications

target more unusual scenarios such as fall detection, behaviour recognition, or

identification of object posture changes. Based on the Table 1.1, it can be seen that

object tracking is a fundamental part of all the video analytics systems applied

in surveillance domain. Perimeter breach is also the task that is offered by all

companies providing video analytics. Most of the video analytics algorithms have

capability to detect of object that is left unattended or is removed from the scene,

and some kind of crowd analysis. Less available is detection of people loitering

and detection of events or activities, such as falling.

While current video analytics greatly improves passive surveillance systems,

it suffers from high false positive rate. Typically, motion detection algorithms are

sensitive to illumination changes, camera shake, motion in the background such as

moving foliage, distant vehicles and usually cannot deal with continuous motion

in the camera field of view. To adapt the current commercially available video

analytics algorithms to specific scenarios requires highly specialized knowledge

and can be labor intensive and expensive.
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Ref. Track Breach Crowd Obj. Loiter Fall Classif.Event
(Agent Video Intelligence,
2014)

X X X X X

(Aimetis, 2014) X X X X X
(Eptascape, 2014) X X X X X
(Honeywell, 2014) X X X X X
(IndigoVision, 2014) X X X X
(IntelliView, 2014) X X
(IntelliVision, 2014) X X X X X
(Ipsotek, 2014) X X X X X
(MarchNetworks, 2014) X X X X X X
(Mango, 2014) X X X X X
(ObjectVideo, 2014) X X X X X X
(Sightlogix, 2014) X X
(Verint, 2014) X X X X X
(AgilityVideo, 2014) X X X X X
(Nice, 2014) X X X X
(SYNAXIS, 2014) X X X X X
(Dvtel, 2014) X X X X
(Puretechsystems, 2014) X X X X X X
(Acic, 2014) X X X X X X X X
(AllGoVision, 2014) X X X X X
(BRSLABS, 2014) X X X X X X X X
(Cognimatics, 2014) X X X
(Foxstream, 2014) X X X X
(Iomniscient, 2014) X X X X X X X X
(VideoIQ, 2014) X X X X X X X X

Table 1.1: Commercial visual surveillance analytics systems, (Goldgof et al., 2009).
Track: object tracking; Breach: detecting perimeter breach; Crowd: detection of
crowding or people counting; Obj.: detection of object left unattended or removed
from the captured scenes; Loiter: identify people loitering activity; Fall: detection
a person falling on the floor; Classif.: Object classification;Event: Event detection.

How to improve current video analytics systems and avoid complex initializa-

tion techniques is still an open research question. There have been many projects

conducted with the focus on visual surveillance and associated applications such

as video/image retrieval, human identification, object recognition, etc. Some of

the well-known projects are listed in Table 1.2.

Acronym Full Name Aims Year Reference
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Smarter
Trans-
portation

Smarter Trans-
portation

Provide efficient video sequence
data analysis either in real time
or after an event occurs to
enhance security at transporta-
tion facilities, including airports,
ports, railways and roadways.

2014 IBM (2014)

PROTECT-
RAIL

Integrated se-
curity of Rail
Transport

To Develop implement and asses
asset-oriented integrated solu-
tions based on mature technol-
ogy, and demonstrate a global ar-
chitecture interoperability.

2010-
2014

(Dambra,
2014)

THIS Transport Hubs
Intelligent
Surveillance

To be able to provide real-time
accurate behavioral analysis of
people in transport hub, specific
areas from day and night video
sensors.

2009-
2010

(Saldatos,
2009)

VIRAT Video and Im-
age Retrieval
Analysis Tool

To develop and demonstrate a
system which is able to recog-
nize and report actions such as
someone has entered a building,
shooting, vehicle accelerating, a
group is meeting, etc.

2008-
2010

(DARPA,
2010)

VSAM Video Surveil-
lance And
Monitoring

Real-time moving object detec-
tion and tracking from station-
ary and moving camera plat-
forms, recognition of generic ob-
ject classes.

2007-
2010

(CMU,
2010)

CARETAKERContent Analy-
sis and Retrieval
Technologies to
Apply Knowl-
edge Extraction
to massive
Recording

Aimed at studying, develop-
ing and assessing multimedia
knowledge-based content analy-
sis, knowledge extraction com-
ponents, and metadata manage-
ment sub-systems in the context
of automated situation aware-
ness, diagnosis and decision sup-
port.

2006-
2008

(Ravera,
2008)

KNIGHT Real Time Au-
tomated Surveil-
lance System

Fully automated, multiple cam-
era surveillance system that de-
tects, categorizes and tracks mov-
ing objects in the scene.

2007 Shah et al.
(2007)
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MAVISS Multi-modal
Audio Visible
and Infrared
Surveillance
System

Low cost surveillance system
employing multi-modal informa-
tion form monitoring small areas
and detecting alarming events.

2005 Kumar
et al.
(2005)

VACE I/II Video Analysis
and Content Ex-
traction

Automatic video content extrac-
tion, multi-modal fusion, event
recognition and understanding
all leading to automatic machine
reasoning.

2000-
2005

(CMU,
2005)

PRISMATICAPro-active Inte-
grated Systems
for Security
Management

To enhance, develop and im-
plement cost-effective technical
tools for remote monitoring and
automatic detection of security
threatening events to public
transport passengers, personnel
and property.

2000-
2003

(Lagrange,
2003)

HID Human Identi-
fication at Dis-
tance

To develop automated biometric
identification technologies to de-
tect, recognize and identify hu-
mans at great distances.

2000-
2004

(GVU,
2004)

AVS Airborne Visual
Surveillance

To develop and demonstrate
real-time Precision Video Reg-
istration (PVR), Multiple Target
Surveillance (MTS), and auto-
mated Activity Monitoring (AM)
of sites.

1998-
2002

(DARPA,
2002)

SAKBOT Statistic and
Knowledge-
based Object
Tracker

Visual traffic analysis system
that consists of two main mod-
ules - object detection and object
tracking.

2004 Cucchiara
et al.
(2001)

W4 Who, when,
Where, What

Real time visual surveillance sys-
tem that combines monocular
gray-scale and infrared video im-
agery to monitor people activi-
ties in an outdoor environment.

2000 Haritaoglu
et al.
(2000)

ADVISOR Annotated Digi-
tal Video for In-
telligent Surveil-
lance and Opti-
mized Retrieval

Development of new algorithms
for motion detection, tracking of
people, crowd monitoring and
behavior recognition.

1998-
2002

(Naylor,
2002)

Pfinder Person Finder Real time system for tracking
people and interpreting their be-
havior.

1996 Wren et al.
(1997)
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Table 1.2: List of projects dedicated to visual surveillance

The majority of the research efforts focused on these applications is in the

computer vision community, because surveillance systems that are widely de-

ployed comprise solely of video cameras. Systems that are targeting specific tasks

related to visual surveillance are HID, VACE and THIS. Human identification

from distance was the main focus of the work in HID project. The proposed

method measures static body and stride parameters as a person walks, such as

the distance between head and foot, head and pelvis, foot and pelvis, and left foot

and right foot. These parameters allow the identification of a person via its gait.

The human gait recognition results when a person is fully visible from the front

and the side showed above 90% accuracies (Johnson and Bobick, 2001), but the

performance of the algorithm was not reported on the more diverse surveillance

data.

Defence and military organizations sponsored many pioneering visual surveil-

lance projects. For example, the Defense Advanced Research Projects Agency

(DARPA) Information Systems Office in 1998 funded the Airborne Visual Surveil-

lance (AVS) project, followed by the three-year program to develop Video Surveil-

lance and Monitoring (VSAM) technology in 1997, and the two-year project for

development of the Video and Image Retrieval Analysis Tool (VIRAT) in 2008.

Project VACE addressed challenges of summarization and visualization tech-

niques for very large video datasets. The output of the project was a test-bed

incorporating data, interface and API standards for video information retrieval.

The project THIS focused on creating an ontology for content, context, physical

object and action in visual data.

Projects that target creation of a complete surveillance system include ADVI-

SOR, PRISMATICA, CARETAKER and PROTECTRAIL. One of the early projects
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focusing on intelligent visual surveillance was ADVISOR. It focused on imple-

menting a complete surveillance system that integrates people tracking, behaviour

recognition and video search and retrieval capabilities. The project culminated in

a successful demonstration of the system at the TMB headquarters in Barcelona.

The demonstration showed the potential for the ADVISOR system to be used

to improve exploitation of data from CCTV cameras, but the anomalous event

recognition through learning was not achieved (Naylor and Bastin, 2003). The

PRISMATICA project focused on computer-vision solutions to detect situations

of interest in busy conditions. Promising results were shown on Metro station

data captured in London, Paris and Rome metros. Tasks such as train presence

detection, detection of significant change, and loitering detection rates exceeded

80% (Velastin et al., 2005). The combination of visual and audio information was

explored in CARETAKER project. The project focused on both online and offline

security operations such as tracking, detection of overcrowding or fights, and

information retrieval based on text or video queries. The system was developed

for monitoring town centers, railway stations and other public spaces using video

and audio devices. The PROTECTRAIL project is focusing on creating a security

system for railways transport that combines multiple visual analysis tasks. The

tasks of interest are tracking, staff. passengers, freight and luggage clearance

control, protection of infrastructure, and monitoring of rolling goods.

The early systems, such as Pfinder focused on tracking a person’s head, hands

and body in real time. It has constraints of having one person in the camera

view and a static camera view. The W4 project tracks multiple people using

infrared imagery information and gray scale image data. This system is intended

for an outdoor environment, especially during the night. SAKBOT uses color

information to detect moving objects and to differentiate them from shadows

and ghosts (the foreground area where the object was in the previous frame)

and achieved 10 frames per second processing speed on a standard PC in 2004.
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Project KNIGHT used the then state-of-the-art in computer vision techniques to

identify, categorize and track moving objects in the scene and across multiple

cameras. Some of the systems are multi-modal, for example, MAVISS employs

visible, infrared and audio signals to identify events. A commonality between

the methods is that they require object detection, followed by tracking and then by

supervised classification procedures. Supervised classification requires definition

of the video events that are to be detected as well as examples of those events to

train the classifier. The approaches work well in a constrained setup where visual

events-of-interest are predictable and can be defined in advance, but would break

when applied to unconstrained real-world scenarios. The weaknesses of these

techniques when real-world scenarios are considered need to be identified and

alternative approaches need to be proposed to reflect constraints imposed by such

surveillance applications.

While the approaches based on object detection, tracking and supervised

learning techniques are proven to be highly successful and accurate in the majority

of research experiments, their practical deployment is questionable (Turaga et al.,

2008). This forms the motivation for the investigation of other approaches that

conform to the requirements of real-world applications. Such applications pose

requirements that are addressed in this thesis by designing real-world unusual

event detection algorithms.

Firstly, the descriptors used to represent the events need to be invariant to the

captured environment. Due to the variety of visual surveillance environments,

assumptions such as visibility of full-length human body, or ability to robustly

isolate and track the object in the camera view should be avoided. For example, if

a person is only partially visible because he is walking behind a parked vehicle

or is partially hidden by shrubs, adaptive object representation algorithms are

required to extend the representation of objects, for example people, to include

more invariant features such as texture, interest points and motion information to
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eliminate the requirement of having a complete set of examples of the objects of

interest.

Secondly, initialization processes of the algorithms need to be as simple as possi-

ble. Each algorithm has a number of parameters that need to be chosen depending

on the type of the captured environment. An example could be maximum or

minimum duration of the event, average size of a person in a particular camera

view, sensitivity of the motion detection algorithm. Furthermore, most of the

conventional algorithms rely on accurate training data to be able to detect objects

or events of interest. The video analysis approaches for targeted surveillance

applications should apply adaptive learning techniques to avoid predefined and

labor intensive initialization processes.

Thirdly, surveillance applications have to be designed to run for long periods

of time and to process large amounts of continuous data. The computational cost

for each prediction using algorithms such as decision trees (Xue and Liu, 2013) or

instance-based learning (Bishop, 2006) depends on the amount of data used in

model creation. Over a period of time, the initial prediction rules become obsolete

and new examples are required to be added to the model. Each additional example

increases the complexity of the algorithm and eventually the algorithm becomes

too slow for real-time processing. Thus, algorithms for which the complexity

depends on the number of training examples should be avoided.

These three requirements are taken into account in this thesis when formu-

lating the hypotheses and proposing solutions for real-world unusual event

detection.

1.2.1 Event Detection Framework

Video event detection in visual surveillance systems typically follows some

generic high-level steps which are used as a guideline throughout this work.
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Figure 1.1 shows the data flow diagram, which can be broadly partitioned into

two processes: Abstraction and Modeling. The Abstraction process starts with

acquiring raw video data in a form of a sequence of video frames which are pre-

sented to the machine as matrices of pixel intensities. These matrices are grouped

into temporal segments, which are then transformed into D-dimensional feature

vectors f . In the Modeling part, these vectors are used to train a model that defines

different groups of events. The created model is further used to make a decision

about the nature of the new data which is represented by the same type of vectors

f . External information can be provided to aid the model creation process. This

information can be acquired through manual labeling of the data. The labels, or

annotations, to the vectors f can be obtained through the manual assessment of

the data in an off-line manner. It can also be collected from the user in an online

method via user feedback. Each step can be performed off-line with iterative

optimization techniques, or on-line one data sample at a time. While it is common

in the literature to optimize each step separately, in real-world scenarios it is desir-

able to process one data sample at a time. The following discussion considers each

of the blocks in the flow-diagram and their applicability to real-world scenarios.

The abstraction part of the process is responsible for translating video sequence

inputs into intermediate representations. In the Video Frames block, the system

acquires data from a video sensor. Video frames are usually compressed using

lossy compression algorithms to optimize network bandwidth and to save storage

space and the sharpness of boundaries of the objects present in the captured

scenes might be lost. To define visual events happening over time, consecutive

frames need to be grouped into temporal segments. The Temporal Segments block

represents algorithms that can be used to determine the boundaries of video

segments and to define data units used in the following processing steps. If

the procedure is performed online, delay is introduced to aggregate frames into

segments. The more frames required to represent the segment, the greater the
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Figure 1.1: A typical data flow for generic event detection

delay. Traditional approaches for motion analysis mainly involve computation

of optical flow or feature tracking. Although very effective for many tasks, both

of these techniques have limitations. Optical flow approaches mostly capture

first-order motion and often fail when the motion has sudden changes. Feature

trackers often assume a constant appearance of image patches over time and may

fail when the appearance changes, for example, in situations when two objects

merge or split. Image structures in vide are not restricted to constant velocity or

constant appearance over time. On the contrary, many interesting events in video

are characterized by strong variations of the data both in spatial and in temporal

dimensions.
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The raw data from each frame in a temporal segment is transformed into a

relevant event representation form in the Feature Vectors block. Event description

includes feature extraction algorithms such as edge, motion or interest point

detection, as well as techniques for their representation. Due to the nature of video

events that evolve over time and space, it is important to include appearance and

motion information in the representation. Extraction of appearance information

in event description algorithms can broadly be classified into global and local

methods. Global methods extract information from the entire video frame to

describe the event. Local description methods use the information from the local

regions extracted via object detection or other filtering methods to represent

the event. To represent appearance information, points with a significant local

variation of pixel intensities have been extensively investigated in the past, and

such image points are frequently denoted as ”interest points” and are attractive

due to their high information content. In temporal representation of visual events,

points with non-constant motion correspond to accelerating local image structures

that might correspond to accelerating objects in the world. Hence, such points

might contain important information about the forces that act in the environment

and change its structure. Combination of spatial and temporal information forms

a final representation of the visual events which is captured in a multi-dimensional

vector, also called a feature vector. Space-time event representation should be

able to capture event information broadly enough to allow for variations between

events from the same class to be discarded, such as diverse walking patterns

or various individuals. It should also capture specific information to be able to

differentiate between distinct classes of events, for example, running, walking,

loitering and fighting. Event representation methods for surveillance visual events

are further discussed in Chapter 4.

The feature vectors are used to train a classifier, and to classify previously un-

seen data. The event modeling part of the overall process is devoted to describing
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events of interest formally, and determining whether such an event has occurred.

The training, or learning, of the classifier is described in the Training block. Based

on the availability of Annotations for the training data, the training algorithms

are grouped into supervised and unsupervised methods. In supervised training

approaches, each training data instance is paired with a desired output value by

an expert. Based on this information, supervised learning algorithm produces an

inferred function which can be used for mapping new examples. On the other

hand, unsupervised training, or learning, is trying to find a hidden structure in

unlabelled data. Due to the vast amounts of data that needs to be processed in

visual security applications, and the dynamic nature of its data, it is a demanding

task to provide annotations for all the data. Therefore, unsupervised training

might be preferable in these application. The drawback of the unsupervised train-

ing approaches might be uncertainty of the final results. Due to lack of corrective

process, since the examples given to the algorithm are unlabeled, there is no error

signal to evaluate a potential solution. Hybrid approaches called semi-supervised

or weakly supervised could be alternative to strictly supervised or strictly unsu-

pervised training approaches. All of the methods will be further investigated in

the Chapters 5 and 6 of this thesis.

Depending on the way the training data is used, the training methods can

further be classified into batch and online. In batch mode, all the training data is

required in advance. This method uses iterative optimization techniques which

use all the training data points at each step and delays the classification until after

the training is finished. Classical batch learning techniques are off-line and rely

on the fact that the learning and testing phases are completely separated in the

system. These methods are trained on a specific dataset and then tested in a real-

world environment without any further learning. However, in visual surveillance

applications, the visual event classes and their properties are dynamic and time

varying. In the online approach, the model is updated one sample at a time.
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Online learning algorithms are concerned with problems of making decisions

about the present based only on knowledge in the past. An online learning

algorithm can be summarized by its four main features Liang et al. (2006):

1. The training observations are sequentially (one-by-one or chunk-by-chunk

with varying or fixed chunk length) presented to the learning algorithm.

2. At any time, only the newly arrived single or chunk of observations (instead

of the entire past data) are seen and learned.

3. A single or a chunk of training observations is discarded as soon as the

learning procedure for that particular (single or chunk of) observation(s) is

completed.

4. The learning algorithm has no prior knowledge as to how many training

observations will be presented.

Because all input is not available for the algorithm, it is forced to make decisions

that may later turn out not to be optimal. Nevertheless, online methods are

particularly useful in situations that involve streaming data, because it allows

classification to be started immediately, makes it possible to adapt to the chang-

ing environment and usually does not require storage of all the data from the

past. Although it must be noted, that the classification results may be noisy at

the beginning and might require some user input to allow for a more accurate

representation of the environment at hand. This approach is scalable to large

training datasets as it does not iterate over all data samples. Hybrid batch-online

methods are also possible. These methods create an initial model using a batch

approach, and continue to update it using the online method.

The Classification step is responsible for the comparison between the model

created during the training step and incoming data represented by feature vectors.
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As a result of the comparison, it provides a decision about the labels of events

that those feature vectors represent.

Instead of the standard approach, where the annotations are manually col-

lected in advance of the training, User Feedback could be applied to obtain anno-

tations. This information, supplied by the user after inspecting selected results,

provides an opportunity to utilize supervised training techniques in real-world

scenarios.

The vast majority of works that have been published on event and action

recognition are concerned with the recognition of a finite set of human actions in

known and usually well controlled domains. This work focuses on unusual event

detection which can be formulated as a classification task between two types of

scenarios - usual and unusual. The usual scenarios are the ones that repeatedly

happen in the captured environment, and the unusual events are the ones that

do not repeat themselves. For example, walking across the corridor outside the

research lab is an event that is constantly happening and is classified as usual. On

the other hand, fighting outside the corridor is unusual event. As a comparison,

people fighting in the CCTV footage from a prison territory would probably occur

more often, therefore, there the unusual event detection would not detect this

event as unusual.

1.3 Aims and Objectives

The rapid growth in the number of surveillance cameras and expenses associated

with human monitoring motivates the investigation of computerized optimiza-

tions for security systems. Such solutions aim at closing the gap between the

availability of the security cameras and the efficient use of each deployed camera.

A side benefit of real-world unusual event detection system would be to advance

the applicability of the security cameras in small businesses or homes. It would
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drive the security cameras from being a deterrent of crime and a tool for a post-

incident analysis, to the instrument helping to intervene in undesirable incidents.

The main goal of this research is to propose an unusual event detection framework

that could be applied to real-world surveillance scenarios.

An unusual event, in the environment in which the research is taking place, is a

video event which is not defined in advance, but is unexpected in the captured en-

vironment. It typically corresponds to some activity being performed by humans.

An example of an event can be a person walking, running, kicking. An event

also occurs when multiple people interact for example fight, walk, and eat. An

event can depict not only humans, but other objects such as animals or vehicles.

The specific definition of the unusual event is dependent on the environment

being captured. In real deployments, many events of people interacting in a

monitored scene are not of interest in a surveillance context e.g. people meeting,

chatting, embracing, etc. because they are “acceptable” in some sense and/or

occur regularly. Typically, it is the unusual or abnormal events that do not oc-

cur frequently and thus may not be “acceptable” that are of interest e.g. people

fighting. The challenge for an automated system then becomes to identify these

abnormal/unusual events from usual events. In the thesis, an unusual event

carries the same meaning as an abnormal or interesting event, an anomaly, or

novelty - these concepts are used interchangeably throughout this thesis meaning

the same thing, unless a different meaning is explicitly specified.

A surveillance scenario in real-word applications could be multi-camera based,

multi-modal or single sensor based. In the context of this thesis, a real-world

surveillance scenario is defined to be a single camera based monitoring system,

which is used by a user without a technical background. The camera captures

a continuous video stream of data which ideally is processed on-the-fly giving

real-time alerts of unusual events. The user can respond to the alerts by giving

feedback about the correctness of the alerts. The system runs continuously for
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an undefined period of time without interruption. The challenges of the unusual

event detection in this environment are to find a definition for the usual and

unusual types of scenarios; to find a suitable representation of the video data; to

choose suitable training and classification methods; and to achieve event detection

results with low false-positive rate and high true positive rate.

A huge amount of research efforts in computer vision and machine learning

communities is being focused on improving the efficiency of visual monitoring

systems. However, much of the work is toward algorithm development and is

not overly concerned with practical deployment issues. The aim of this research is

first to identify the constraints imposed by the real-world environment in which

the research is taking place, and then to examine and propose a set of techniques

that could be practically applied to these challenging natural conditions. The

challenges of the targeted environment are addressed in the thesis when evaluat-

ing the proposed algorithms. The techniques considered in the thesis cover all

the processes needed to make a prediction when provided with the raw visual

sensor data. The prediction guides the decision whether the visual event is abnor-

mal/unusual and whether it warrants human intervention of some description.

Following the motivations and aims described in the previous sections, four main

questions are addressed in the thesis:

1. Could unsupervised classification techniques be applied to unusual event

detection and would it yield comparable results to the state-of-the-art super-

vised classification techniques?

2. Event representation is an essential part of the event classification task.

Can space-time visual events be efficiently represented without relying

on detection of the moving objects, accuracy of objects’ shape, and their

complete motion trajectory?
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3. Could online training techniques be used as an alternative approach for

training in applications where optimization techniques are not feasible?

4. Could a supervised classification method be integrated into the unsuper-

vised system to benefit from the advantages of both techniques?

To answer the research questions, research and experiments tailored to each

question are conducted, and the following contributions are identified:

1. Implementation of a baseline unsupervised event detection pipeline and its

evaluation on continuous video data specifically created to simulate a real

world surveillance scenario.

2. Evaluation of state-of-the-art visual event descriptors focusing on their

applicability to real-world surveillance scenarios.

3. Evaluations of unsupervised unusual event detection approaches in com-

parison to a state-of-the-art supervised approach.

4. Identification of the trade-offs between online and batch training for unsu-

pervised unusual event detection.

5. Stability analysis of the online unsupervised unusual event detection algo-

rithm and experiments on improving the stability.

6. Investigation the effect of incremental learning on both the unsupervised

and the supervised classification approaches.

7. Combination of supervised and unsupervised classification approaches to

improve the overall performance of unusual event detection.
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1.4 Thesis Outline

In Chapter 1, the problem of unusual event detection in real-world surveillance

applications is identified. The thesis is introduced by providing motivation, a

brief overview of the research area and hypotheses. State-of-the-art computer

vision and machine learning techniques applicable to the targeted application

are described in Chapter 2. In Chapter 3, a baseline event detection system that

conforms to real-world application requirements is implemented and tested. The

areas that require further investigation are also identified. State-of-the-art video

event description algorithms are examined in Chapter 4 and suitable approaches

for visual events representation in surveillance-type environments are suggested.

In Chapter 5, the evaluation of an unsupervised unusual event detection process

is performed by comparing it to a state-of-the-art supervised event classification

process. Comparison of batch and on-line training techniques is carried out,

and a qualitative, as well as quantitative, evaluation of the results is performed.

The final experiments are presented in Chapter 6 where the stability and the

accuracy of the selected unusual event detection process are examined, and

solutions are proposed to decrease the variability of the process and to improve

the overall unusual event detection accuracy. Finally, in Chapter 7 the results

are summarized, and suggestions for future experiments to be carried out are

proposed. Additional methods that could substituted or added to the proposed

methodology are described in a future work section.

1.5 Summary

From the overview of the current surveillance systems and a brief analysis of the

state-of-the-art research targeting surveillance applications, the unusual event

detection problem was defined. It was identified that for a generic system to
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be applicable to real-world environments three conditions have to be fulfilled:

invariance to the captured environment, simplicity in the initialization procedures

and constant algorithm complexity with an increasing amount of data. To help

identify solutions conforming to the defined requirements, the event detection

task was decomposed into two main parts: event abstraction and event modeling.

These two parts are further broken down into smaller data processing steps, and

implementation of each step is addressed in the rest of the document. The next

chapter discusses state-of-the-art algorithms reported in the computer vision

and the machine learning literature, and the remainder of the thesis reports

the experimental results of evaluating the described steps for an unusual event

detection system applicable to real-world surveillance scenarios.
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Chapter 2

Literature Review

2.1 Overview

The main goal of this chapter is to present a review of the state-of-the-art re-

search work in computer vision and machine learning that addresses surveillance

applications. It starts with an overview of the current research and trends in

visual surveillance surveillance topics. The discussion is then directed to the

outlier detection approaches. Subsequently, the algorithms constituting event

detection are discussed starting with techniques used for abstraction of visual

data, such as representation and event segmentation, followed by event modeling

techniques that include training the model and classification of the events of

interest. Evaluation techniques are discussed in the final section. Conclusion sum-

marizes the findings in the literature and explains the directions of the subsequent

investigations reported in this thesis.

2.2 Visual Surveillance

The primary goal of visual monitoring systems is to help to ensure safety and

security by detecting the occurrences of activities of interest within a captured
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environment. In the past decade, visual surveillance has been an active topic in

computer vision and machine learning communities. In this section, the advances

of the past decade in the research are discussed. Technology advancements in

distributed and heterogeneous surveillance systems, wide area and crowd moni-

toring, smart embedded cameras. Moreover, challenges in designing surveillance

systems and public acceptance of the new technologies are discussed. A number

of application areas are then discussed, and the standard video data analysis ap-

proaches are discussed for each of the area. At the end of the section, the advances,

challenges, and future research trends in visual surveillance are summarized.

2.2.1 State-of-the-art

A number of reviews have been conducted during the past decade, summarizing

technological advances and state-of-the-art algorithms in visual surveillance sys-

tems. Early steps of intelligent CCTV based surveillance were targeting coverage

of bigger areas with less cameras or easier monitoring. First, manual camera con-

trol such as pan, tilt and zoom was introduced to be able to manually identify and

track events of objects of interest. Second, sequential switching was introduced

to allow live coverage of multiple areas by a single security personnel. Then the

recording of video data was introduced to provide an audit capability. Eventually,

the availability of powerful computers has enabled increased automation with

the used of image and video processing (Davies and Velastin, 2005).

A concept of ”multimedia” surveillance systems is introduced by Cucchiara

(2005), and defined as a system not only capable to furnish multimedia data, but

also to collect, process in real-time, correlate and handle multimedia data coming

from different sources. A pioneer project that defined cooperative multi-sensor

architecture was VSAM Collins et al. (2001). Since then, a significant amount

of progress was done on multi-camera object tracking, object re-identification,
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data fusion in distributed surveillance systems as documented by Valera and

Velastin (2005), and more recently by Wang et al. (2013) and Mosabbeb et al. (2013).

Biometric data (Albesher et al., 2014) as well as speech (Xu et al., 2014) and face

recognition (Ming Du et al., 2014) are widely researched in human identification

tasks in distributed surveillance systems.

Thanks to a confluence of simultaneous advances in disciplines as computer

vision, image sensors, embedded computing, and sensor networks, distributed

smart cameras are emerging. Shi and Lichman (2005) discuss challenges associ-

ated with smart cameras development and application areas. The idea of smart

camera is to convert data knowledge by processing information locally, and trans-

mitting only the higher abstraction results. Compared with PC-based systems, an

embedded system is usually subject to many constraints of the design such as low

power, limited resources, real-time processing and low cost. Important markets

for smart cameras are industries such as robotics, pharmaceutical, manufacturing,

food production. The tasks these smart cameras usually perform include bar-code

reading, part inspection, flaw detection, dimension measurement, assembly veri-

fication, etc. Other emerging markets for smart cameras are intelligent transport

systems, automobiles, human computer interfaces, healthcare, games, video con-

ferencing, biometrics (Shi and Lichman, 2005). Development of low-complexity,

low cost algorithms suitable for hardware implementation, and software and

hardware co-design, in order to map algorithmic requirements to hardware re-

sources are essential. Intelligent video surveillance systems require complicated

video processing and is still an area of active research to implement as embedded

components Rinner and Wolf (2008). In private places such as restrooms, surveil-

lance systems can not transfer all the information out. Embedded smart cameras

would be able to increased security without violating privacy in such places (Qi

et al., 2012).
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In situations where networks of hundreds of cameras are used to cover wide

areas, algorithms for camera self calibration, finding corresponding objects in

multiple sensors, and communication methods for data transmission are the main

issues of research (Kim et al., 2010). Tracking algorithm for objects, such as people

and vehicles, in visual systems where long-term occlusions and movements

between camera views are present was proposed by Bowden and Kaewtrakulpong

(2005). Each individual camera performed foreground segmentation, shadow

removal, and tacking algorithms. Following this, a distributed tracking modules

is used to connect spatially and temporally unconnected trajectories of the same

objects. Moving objects were correctly re-identified 89% of the time, but the

results showed degraded performance when the distances between paths are

increased. Exchange of information between video sensors in the distributed

system is addressed by Senst et al. (2011), where communication protocol, activity

information and relative locations of cameras are communicated to the central

node and are made available via user-interface to the end user.

When crowded environments need to be interpreted by visual data analysis

algorithms, properties such as density and flow are used. The techniques for

crowd analysis do not attempt to identify individuals in a crowd - the crowd is

monitored as a generalized entity. Ideal gas theory provide a basis for predicting

the behaviour of crowds (Davies and Velastin, 1995). Some analogies with fluid

behaviour captured in computational fluid dynamics (CFD) (Nam and Hong,

2014) and with the behaviour of charged particles in an electric filed (Davies

and Velastin, 1995) may also be observed in visually captured crowds. Another

important crowd feature is density, which defines number of people per unit area.

Crowd density can be estimated by employing background removal techniques,

texture analysis, or other pattern recognition techniques (Zhan et al., 2008). Crowd

monitoring is of interest in urban places such as rail-stations, shopping malls and

airports. Detecting of individuals who remain in once place while surrounding
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crowds move could be an example of scenario of interest to be detected in crowded

environments.

When designing a surveillance system, trade-offs have to be made. A review

produced by Haering et al. (2008) focused on a discussion of the trade-offs such

as sensor calibration versus fast sensor installation, choosing parameters of sys-

tem components such as video storage, alerting services, camera controls, etc.

Even though calibration of the sensors enables system to use the absolute size

and speed of the detected objects, this labor intensive task can be replaced by a

definition of size filters. Automatic sensor calibration is an active research topic

in machine vision community. Evans and Ferryman (2010) use moving pedestri-

ans to calibrate visual systems with multiple cameras and overlapping fields of

view. They achieve calibration errors of 3 to 26 pixels. Choosing type of system,

for example, distributed versus heterogeneous systems, generic versus specific

system, is dependent on the application and different video analysis approaches

would be required for each of the type. The need for improvement in computer

vision algorithms to address issues such as occlusion handling, fusion of 2D

and 3D tracking, anomaly detection, and behaviour prediction, were identified.

A survey by Rababaah (2012) discusses strengths and weaknesses of possible

components video data analytics such as motion segmentation, region of interest

(ROI) characterization and tracking, event recognition and scenario profiling. The

findings of the survey were that there is little work done in the area of large scale

surveillance systems and that the majority of the work reported in intelligent

visual surveillance area lack fusion oriented methodologies.

(Liu et al., 2013) composed a broad overview of the research in visual surveil-

lance. A third-generation surveillance system (3GSS) that includes multi-sensor

environments, wireless sensor networks, distributed intelligence and awareness,

was discussed by Raty (2010). The review was focused on the technologies

required to implement such a system such as architecture and middleware con-
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siderations. The challenges in the current surveillance systems were identified

such as application of wireless networks, energy efficiency and scalability.

2.2.2 Application Areas

The research targeting intelligent visual surveillance systems covers different

application areas such as security in public transport (Goldgof et al., 2009; Candamo

et al., 2010), motorways (Kastrinaki et al., 2003; Sun et al., 2006; Buch et al., 2011),

airports (Weber and Stone, 1994; Gong and Xiang, 2003; Foucher et al., 2011;

Jargalsaikhan et al., 2013), public places (Zhan et al., 2008; Ho et al., 2012), and

homes (Patrick and Bourbakis, 2009; De Silva et al., 2012; Brezovan and Badica,

2013). The main research areas that contribute to the progress of intelligent

systems are computer vision, machine learning, and data management. Different

visual event detection approaches are taken depending on the application area.

Research is the mentioned application areas are further discussed in this section.

Public Transport

infrastructures, such as train and metro networks, have thousands of security

cameras installed to monitor every-day operations. Accidents in the public trans-

port networks affect and endanger thousands of people. As an example of the

amount of commuters in these networks, the busiest metro in Europe, Moscow

Metro, in 2007 had 9.55 million passengers per day (Goldgof et al., 2009). Large

real-time transit visual surveillance systems have already been deployed and

tested in large underground transit networks in order to improve the safety and

security of the public transport zones. For example, the ADVISOR intelligent

surveillance system architecture (Attwood and Watson, 2004) was tested live at

Barcelona’s TMB metro stations. A European Union funded project PRISMATICA

(Velastin et al., 2005) tested automatic visual analysis approaches in Liverpool St.
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station, London and Paris metro station Gare de Lyon. The CARETAKER project

(Carincotte et al., 2006) integrated the automated situation awareness system in

the Metro of Rome, Italy. The events of interest in public transport applications

were identified by Ziliani et al. (2005). They include proximity breaching, drop-

ping objects on tracks, launching objects across platforms, person trapped by the

door of a moving train, walking on rails, falling on the tracks and crossing the

rails. (Candamo et al., 2010) - understanding transit scenes. Incidents of interest

in public transport systems include overcrowding, loitering, busking, begging,

jumping over access barriers, drug dealing. Fears if terrorism lead to continuous

monitoring for abandoned luggage or suspect packages.

Mototrways

Intelligent transport systems increasingly apply computer vision and video an-

alytics to monitor roads and motorways. Intelligent transport systems can be

broadly grouped into three groups: highway traffic monitoring, urban traffic

monitoring and on-vehicle vision systems. Traffic analysis of highways appears

to be less challenging than other problems based on the detection and classifica-

tion figures reported in the literature (Buch et al., 2011). Vehicle number plate

recognition is one of the most reliable and effective techniques developed for

traffic monitoring so far. An urban environment is more challenging than the

highway traffic monitoring with respect to traffic density, lower camera angles, a

high degree of occlusions (Buch et al., 2011). Moreover, in an urban environment,

road users include pedestrians, bicycles and motorbikes which are usually absent

from the highways. On-board automotive driver assistance is another transport

monitoring application that aims at alerting the driver about driving environ-

ment and possible collisions. Most of the visual analysis techniques proposed for

on-vehicle monitoring are based on the estimation procedures for recognizing

the borders of the lanes and determining the vehicle paths. Two main tasks that
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most of the traffic monitoring systems tackle, whether with static or moving

cameras, are the estimation of the road geometry and vehicle and obstacle detec-

tion (Kastrinaki et al., 2003). On-road vehicle detection is also one of the most

important components for any driver assistance systems (Sun et al., 2006). Speed

monitoring is carried out by triggering cameras when a vehicle speed exceeds

the speed limit. Automatic recognition of vehicle registration number can also be

automated. Number plate recognition is also integrated in ’congestion charging’

(automatically billing the owners of vehicles which are observed travelling within

city centers during chargeable periods of time) and ’automatic road pricing’ (toll

collection without toll booths) technologies‘(Davies and Velastin, 2005). A typical

example of research transferred to commercial products is vehicle and traffic

surveillance: systems for queue monitoring, accident and inci- dent detection,

tunnel monitoring have been developed (Cucchiara, 2005).

Airports

Security is also of big concern in the air transport systems. Visual monitoring

in airports targets different parts of the airport system operations. Two distinct

groups of monitored environments are the outdoor and indoor areas. Weber and

Stone (1994) addressed weather monitoring issues in the outdoor environment.

They proposed an enhanced weather situation awareness for air traffic control

teams where the speed and direction of storm movement are identified using

Airport Surveillance Radar (ASR). Gong and Xiang (2003) also targeted outdoor

airport environment and focused on aircraft cargo activities such as moving

truck, loading, unloading. On the other hand, in indoor airport surveillance

applications, the main focus is on recognition of human actions and interactions.

Human activities in the airport lobby were investigated by Foucher et al. (2011)

and Jargalsaikhan et al. (2013). The proposed algorithms were tested on video
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footage from Gatwick airport, and the events of interest were: person running,

person putting down an object, person point with his/her hand.

Public Places

Most of the public spaces are perceived as crowded environments with a constant

flow of people. The analysis of crowd phenomena is of interest in a number of

public space applications. Crowd management in events such as sports matches,

concerts and public demonstrations is applied to avoid crowd related disasters.

To make the layout of shopping malls more convenient to costumers, for example,

crowd behaviour is analyzed while designing public spaces. In intelligent environ-

ment applications, crowd analysis is applied to assist the crowd or individual in

the crowd to navigate spaces such as museums and exhibitions. Zhan et al. (2008)

conducted a survey on computer vision techniques for crowd analysis. They

suggested that combining non-vision analysis techniques with computer vision

techniques could aid in developing an intelligent system, capable of automatically

understanding and modeling crowd behaviours. Non-crowded public places

were the subject of the review by Ho et al. (2012). They undertook a pilot study

where two modalities, video and ultrasonic sensor measurements, were applied to

identify and track people in public spaces. Open challenges that produced errors

in the study were identified. For example, tracking a person in a crowd, indoor

and outdoor lighting, occlusion reasoning. Fusion of different modalities such as

ultrasonic, thermal, infrared, audio, and pressure sensor reading, is identified as a

potential approach to improving the accuracy of the results.

Smart Homes

Video surveillance in smart home environments attempts to detect, recognize,

and track persons, and to understand and recognize their actions (Brezovan and

Badica, 2013). Pioneering work in this area is the Smart Rooms implemented
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by the MIT Media Lab (Pentland, 1996). A number of different categories of the

smart home applications exist that focus on assistance in childcare, healthcare

and eldercare. Smart home applications aim to support the wellbeing of the

residents of the home by providing feedback on the daily activities in the house,

raising alarms when unexpected activities happen, or providing information in

order to reduce energy consumption (De Silva et al., 2012). Providing an ambient

intelligence that is required to make decisions in smart home applications is still a

challenging task. Challenges arise due to highly unstructured human behaviour.

(Mubashir et al., 2013) reports state-of-the-art methods of fall detection.

2.2.3 Discussion

While the visual surveillance application areas are diverse, the research in all

of them focuses on the task of event or activity understanding, description and

identification. Data analysis approaches rely on the same computer vision and

machine learning techniques. The most important techniques in these research

areas, which are part of most visual surveillance systems are (Hu et al., 2004):

modeling of environments, detection of motion, classification of moving objects,

tracking, understanding and description of behaviours, human identification,

fusion of data from multiple cameras. Future development of integrating different

sensors (audio, thermal, etc.) was seen as a future trend a decade ago (Davies and

Velastin, 2005; Cucchiara, 2005), and it is getting significant attention in current

research (Liu et al., 2013).

The surveys are focused on slightly different parts of intelligent visual surveil-

lance systems, but it can be noticed that all of the reviews discuss activity recogni-

tion methods based on object detection and tracking techniques, that are active

topics in current computer vision research. Moreover, many reviews (Hu et al.,

2004; Davies and Velastin, 2005; Haering et al., 2008; Raty, 2010) have a section
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about unusual event or activity detection and identify it as an important visual

surveillance application.

2.3 Event Representation

As previously discussed, event detection is composed of two parts: abstraction,

where efficient video event descriptors that are pertinent to events of interest are

extracted, and modeling, where these descriptors are applied to train the classifiers

to model those events in order to separate them in the best possible way. In the

surveillance application context, the term “event” usually refers to one of the

following descriptions:

• human activity (a single person or a few people);

• crowd activity (without distinguishing between individuals);

• movement of vehicles or traffic;

• interactions between humans, objects, and their environment;

• other, such as facial expressions, gesture, environmental conditions.

Most of the research addressing surveillance applications concentrates on human

activity. Many researchers focus their models on single person activities (Schuldt

et al., 2004; Ke et al., 2005; Niebles et al., 2006; Danafar and Gheissari, 2007;

Bregonzio et al., 2009b). Activities of a single person as well as interactions with a

small number of other people are also widely researched (Lv et al., 2004; Kitani

et al., 2005; Fernández-Caballero et al., 2012). Examples of such activities are

walking, meeting, fighting, falling, etc. Activities specific to the environments,

such as bank, or airport runway are also addressed by researchers (Georis et al.,

2004; Xiang and Gong, 2006). Depending on the activities, different approaches

34



to modeling and identification techniques are applied. The approaches to event

representation and detection also differ for indoor and outdoor environments.

Event representation is a feature extraction task that consists of extracting

spatial and motion cues from the video that are discriminative with respect to

particular activities within a scene. Description of an event or activity always starts

from extracting low-level features. Low level information in a two-dimensional

video frame consists of shape, color or texture depicted in that frame. If a sequence

of video frames is available, differences between the consecutive frames provide

motion information about the objects present in the captured scene. Using a

combination of the static information in each frame and the differences between

the frames that capture dynamic information, spatio-temporal descriptors are

formed. Due to the temporal nature of video events, descriptors from consecutive

frames have to be grouped into the meaningful event representations. For this

task, temporal segmentation techniques are employed that identify boundaries

of events in video data. The final video event representation is then used in the

higher level event modeling and classification steps.

Four groups of low-level feature extraction techniques can be identified: back-

ground subtraction, optical flow, point trajectory, and filter responses. Background

subtraction is a popular method for identifying the moving parts of the scene.

The shape of the resulting object silhouette is often used to describe objects and

their activities using global methods such as moments (Bobick and Davis, 2001).

Although silhouettes provide strong cues for action recognition and are insen-

sitive to color, texture and contrast change, they fail in detecting self occlusions

and depend on robust background segmentation. Optical flow provides a concise

description of both the regions of the image undergoing motion and the velocity

of that motion. Optical flow often serves as a good approximation of the motion

projected onto the image plane. Optical flow based representations do not depend

on background subtraction, but they are sensitive to changes in color intensities of
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the pixels due to variation of light, camera flicker, or camera motion. Trajectories

of moving objects have been used as features in many applications to infer the

activity of the object. The trajectory itself is not very useful as it is sensitive to

translations, rotations and scale changes. Alternative representations such as tra-

jectory velocities, trajectory speed, spatio-temporal curvature or relative motion

have been proposed to acquire invariance to some of these variabilities. Extracting

unambiguous point trajectories from video is complicated by several factors such

as occlusions, noise, background clutter. Temporal filtering is an alternative ap-

proach to the region-of-interest detection in image sequences. These approaches

usually represent actions using bag-of-features (BOF) which are histograms that

count the occurrences of the vocabulary-features within a video segment. The

practical advantage of this approach is that filter responses show consistency for

similar observations, but can account for outliers. Filtering is useful in scenarios

with low-resolution or poor quality videos where it is difficult to extract other

features such as optical flow or silhouettes.

The methods of finding actions from video data can be classified into: non-

parametric, volumetric and parametric. The non-parametric approach extracts

a set of features from each video frame and compares them to a predefined

template. Examples of non-parametric methods are dimensionality reduction,

template matching, 3D object matching, and manifold learning. This approach

requires background subtraction techniques to extract the shape of the moving

object accurately and is limited to fixed short distance camera settings. The

volumetric approach does not extract features on the frame by frame basis. Instead,

it considers a video as a 3-D volume of pixel intensities and extends the standard

image features to the 3-D space. Examples of volumetric methods are space-time

filtering, constellation of parts, sub-volume matching, tensors. This approach is

suitable for capturing the motion of the events that are difficult to define. The

parametric approach imposes a model on the temporal dynamics of motion, from
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which the parameters for a class of actions are estimated. Examples of parametric

methods are hidden Markov models (HMM), linear dynamic systems (LDS). This

approach is suited for complex actions such as dancing, juggling, and capturing

the motion of a music conductor’s hands.

The action segmentation task is responsible for separating out single action

instances from streams of video data. In the literature, action recognition results

are often demonstrated on pre-segmented video clips and each video clip repre-

sents a single action from start to finish. When real-world surveillance videos

are analyzed, manual segmentation of video sequences is usually not feasible.

Temporal action segmentation can be classified into three broad classes (Weinland

et al., 2011): boundary detection, sliding windows and grammar concatenation.

Motion boundaries are usually detected as a preprocessing step before event classi-

fication. Boundary detection methods provide a generic segmentation of video

without dependence on the action classes, but are subject to errors in the recov-

ery of motion fields and are affected by the presence of multiple, simultaneous

movements. Video sequence can be divided into multiple, overlapping segments

using a sliding window. Classification is performed on all the segments and peaks

in the resulting classification scores are interpreted as action locations. The slid-

ing window approach, when compared to motion boundaries, produces much

more segments that need to be evaluated by the classifier, thus are usually more

computationally intensive. However, sliding window methods based on fewer

assumptions can be integrated with any action classifier. Grammar concatenation

techniques require action representation that involves grammars, which give a

model of transitions between states and actions. Concatenative grammars can

be build by joining all models in common start and end node and by adding a

loop-back transition between these two nodes. Typically these approaches are

hand crafted to specific scenarios and do not generalize well to other scenes.
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2.4 Event Classification

Event classification consists of the steps of learning statistical models from the

action representations, and using those models to classify new observations. A

major challenge for the algorithms is dealing with the large variability of events

that belong to the same class. Objects participating in same class events can exhibit

different size, speed, and style. Event classification approaches can be broadly

grouped into four groups: logic based methods, graphical models, support vector

machines and clustering approaches.

Logic based methods rely on formal logic rules to describe activities. Several

researchers have proposed ontologies for specific domains of visual surveillance.

For example, Chen et al. (2004) proposed an ontology for analyzing social inter-

action in nursing homes. Hakeem and Shah (2004) proposed an ontology for

videos of meetings. Georis et al. (2004) proposed ontologies for activities in bank

monitoring settings. Though empirical constructs are fast to design and work

well, they are limited in their utility to specific deployments for which they have

been designed. A graphical model is a probabilistic model for which a graph

denotes the conditional dependence structure between random variables. Graph-

ical models can be roughly divided into two families: Bayesian networks and

Markovian networks. A Bayesian network (BN) is a graphical model that encodes

complex conditional dependencies between a set of random variables that are

encoded as local conditional probabilities. Dynamic belief network (DBN) is a

generalization of the BN where temporal dependencies are incorporated between

random variables. Usually the structure of the DBN is provided by the domain

expert and to learn local conditional dependence relations requires very large

amounts of training data or extensive hand-tuning by experts both of which limits

the applicability of DBNs in large scale settings. A Markov network is represented

by an undirected graph and is based on a set of random variables having Markov
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properties. Hidden Markov model (HMM) is a widely used method in speech

recognition and is increasingly used for visual event recognition. Zia et al. (2013)

modeled visual activities by representing each activity by a distinct HMM and

achieved 90 to 95% recognition rate for waking, running, skipping, sitting down

and standing up activities. In comparison to DBNs, HMM encodes less complex

conditional dependence relations. A Support vector machine (SVM) is a popular

technique for solving problems in classification, regression and novelty detection

(Bishop, 2006). An important property of support vector machines is that the

determination of the model parameters corresponds to a convex optimization

problem so any local solution is also a global optimum. The basic idea of a linear

SVM is to find a suitable hyperplane that divides a given dataset into two parts

with maximum margin. After that, the SVM is utilized to classify unlabeled

datasets. However, in practice, many data are not linearly separable, and no

hyperplane may exist that can split the data into two parts. A non-linear SVM can

be achieved by using Kernels. An SVM is not only capable of learning in high-

dimensional spaces but can also provide high performance with limited training

data. Clustering analysis is the grouping of data instances in order to discover the

structure in the data. The results of a cluster analysis may produce identifiable

structure that can be used to generate hypothesis (Webb, 2002). Blank et al. (2005)

applied spectral clustering algorithm with a Median Hausdorff distance to get a

grouping of the dataset. Wang et al. (2006) used spectral clustering algorithm to

find the classes of actions.

2.5 Anomaly Detection

Detecting unusual activities in visual surveillance applications is of considerable

practical interest. Algorithms able to single out abnormal events within streaming

or archival videos can serve a range of applications - from monitoring surveillance
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feeds, or suggesting frames of interest in scientific visual data that an expert ought

to analyze, to summarizing interesting content on a day’s worth of web-cam data.

In any such case, automatically detecting anomalies should significantly improve

the efficiency of video analysis, saving valuable human attention for only the

most salient content (Kim and Grauman, 2009). Despite the problem’s practical

appeal, abnormality detection remains technically challenging, and intellectually

hard to define. The foremost challenge is that unusual events naturally occur with

unpredictable variations, making it hard to discriminate a truly abnormal event

from noisy observations of normal observation. Furthermore, the visual context

in a scene tends to change over time. This implies that a model of what is normal

has to be incrementally updated as soon as new observations become available; a

model requiring batch access to all data of interest at once would be useless in

many real scenarios.

2.5.1 Definition

The objective of unusual event detection is to detect, recognize and learn interest-

ing events. A number of reviews are conducted for unusual event detection in

different areas. In signal processing, outlier detection is a popular task for fault

detection, radar target detection, detection of masses in mammograms, statisti-

cal process control and several other tasks. In the literature this task has been

defined using terms such as suspicious, irregular, uncommon, unusual, abnormal,

novelty, anomaly activity/event/behaviour. Markou and Singh (2003a,b) reviewed

important issues related to novelty detection, such as robustness and trade-offs,

parameter minimization, generalization and computational complexity. It was

identified that assumptions on the nature of the data have to be made in advance

of modeling with statistical approaches. Moreover, the amount and quality of

the training data is found to be very important in the robust determination of the

40



model parameters. Hodge and Austin (2004) conducted a comparative review

of techniques for outlier detection. The authors have broken down the outlier

detection techniques into three fundamental groups: clustering, classification, and

a novelty approach. It was concluded that algorithm developers should choose

a modeling technique depending on the data type, the available ground-truth

labeling, and how they wish to detect and handle the outliers. Most of the earlier

work in unusual event detection has been conducted in studies of control systems.

Network anomaly detection for managing cyber threats has received a lot interest

in the past decade due to the advances in networking technology that allowed

internet to expand as a global medium in communications and commerce. The

reviews in this area show that most of the solutions for computer intrusions are

still based on the intrusion signatures (Lazarevic et al., 2005; Patcha and Park,

2007; Sabahi and Movaghar, 2008), but there is an increasing trend to employ tech-

niques that create models of generic acceptable behaviours and identify unknown

threats by evaluating the deviations from these models (Koch, 2011; Juvonen and

Sipola, 2013; Berger et al., 2014).

A number of surveys for anomaly detection in a variety of domains have

been conducted by Chandola et al. (2007a,b, 2008, 2012). Chandola et al. (2007a,b)

classified outlier detection techniques based on input data, type of supervision

and type of outlier. In a subsequent survey (Chandola et al., 2008), a comparative

evaluation of a large number of anomaly detection techniques was presented.

The conclusions from the experimental results were that, for anomaly detec-

tion, the nearest neighbour based techniques have a slightly better performance

than clustering techniques. Finite state based techniques are the most consistent

techniques, while probabilistic suffix trees and the sparse Markovian techniques

perform poorly. It is also noted that the performance of a technique mostly de-

pends on the nature of the data. In the latest survey (Chandola et al., 2012), the

anomaly detection techniques were classified based on the problem formulation
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that they are trying to solve: sequence based, contiguous subsequence based, and

pattern based anomaly detection techniques. The importance of future research

into anomaly detection in multivariate sequences and online anomaly detection

was highlighted.

Surveys of anomaly detection in automated surveillance applications were

conducted by Sodemann et al. (2012) and Popoola and Wang (2012). Popoola

and Wang (2012) posed an abnormal behaviour task as a general task in visual

surveillance applications and conducted a broad overview of the video event

detection field. The anomaly detection task is posed as a pattern learning prob-

lem that deals with the classification of video object behaviour by finding good

matches either with a priori known templates of behavior or learning and forming

statistical models of behaviour types from the time varying feature data. A list of

questions that motivate the research in this area are identified:

• Desired level of supervision;

• The types of features;

• Handling of noise and assurance of robustness;

• Compact representation;

• Appropriate similarity measures.

2.5.2 Application Areas

2.5.3 Discussion

The areas that require more input from researchers were identified. Firstly, bench-

mark evaluation dataset is required for evaluation. Secondly, research on methods

that are applicable to real-time scenarios. Thirdly, the need for systems that can

detect suspicious events with a minimum description of the scene context.

42



On the other hand, Sodemann et al. (2012) specifically focused on reviewing

anomaly detection algorithms that are real-time. It was identified that further

study is needed to address the applicability of methods to a wider range of surveil-

lance targets in varying environments. The lack of a standardized benchmark

evaluation approach was emphasized and a requirement for a common widely ac-

cessible repository of standardized and meaningful datasets was also highlighted.

The following sections discuss event detection, representation, classification, and

result evaluation techniques reported in the literature specifically targeting visual

surveillance.

2.6 Result Evaluation

Performance of classification algorithms is often measured in terms of accuracy.

Evaluation of the accuracy is an important method of comparative evaluation

of the algorithms. Many different approaches to evaluation could potentially

be employed, from basic Precision and Recall, to more considered approaches

that suit certain experimental use cases. A commonly used performance metric

for event classification algorithms is the Receiver Operator Curve (ROC) where

the true positive rate is plotted against the false positive rate while changing

the classification threshold (Viola and Jones, 2001; Xiang and Gong, 2005; Junior

et al., 2009; Mehran et al., 2009; Mahadevan et al., 2010). The measure is well

suited for event classification techniques because it shows the trade-offs that can

be made between accuracy of the results and the detection rate. While the ROC

curves are well suited for comparison of different methods, the measure treats

both classes equally. Therefore, it is most suitable for experiments with balanced

testing data-sets where all the classes have an equal amount of instances. In event

detection experiments, there is an imbalance between classes to be segregated.

Significantly more data instances are available for usual events than for the events
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of interest i.e. the ones to be detected. If ROC is applied to represent the results,

the bias towards the usual class would show over-optimistic results.

Precision-recall curves (PRC) are used to get a more accurate evaluation of the

event detection task (Davis and Goadrich, 2006; Willems et al., 2008; Umakanthan

et al., 2012). The PRC representation of the results focuses only on the detected

events and the ones that should be detected. In other words, it takes into account

only events that are of interest in the event detection task. It plots the fraction of

detected instances that are true events versus the fraction of overall true events

detected while varying a threshold. Setting a threshold can be a subjective task

depending on the required tradeoffs, therefore a single metric can be defined for

comparison of methods before applying the threshold. Area under curve (AUC)

is a common metric used to represent the overall performance of the classifier

and to get a coarse comparison between different methods (Junior et al., 2009; Loy

et al., 2010; Marı́n-Jiménez et al., 2013).

Once the classification accuracy trend is determined using the above men-

tioned methods the threshold can be chosen and other metrics can be further

evaluated such as confusion matrix (Xiang and Gong, 2005; Danafar and Gheissari,

2007; Laptev et al., 2008).

To be able to construct the confusion matrix, binary results are required. There-

fore, threshold for resulting probabilities needs to be chosen. How it is chosen

depends on the application requirements, for example, it can be chosen by defin-

ing a required accuracy or by evaluation of some relevant measure. In the event

detection application, F-score can be used to find an optimal threshold as it com-

bines both precision and recall measures to get a single accuracy measure (Parker,

2010). The F1 measure is the score obtained from the non-weighted precision and

recall measures:

F1 = 2.0 · recall · precision
recall + precision

(2.1)
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However, the F1 metric requires the annotations of the test data to find the

best performing threshold and this method is suitable for evaluation purposes.

To evaluate algorithms proposed in this thesis, the ROC curve metric is used

due to its popularity with visual event classification algorithms it provides for

comparison between different classification approaches. In addition, the PRC is

also evaluated for all experiments due to its independence to the amount of true

negative detections. Different thresholding approaches and their effect on the

accuracy measures are compared in the thesis.

To make the evaluation of the results meaningful, it is important to choose an

appropriate dataset. Many different datasets have been used for human action

and activity recognition (Chaquet et al., 2013). Some of the datasets are used

in very specific action recognition tasks, such as abandoned object, daily living

activities, detection of human falls, gait analysis, pose or gesture recognition. In

order to compare different event detection and recognition systems, benchmark

datasets have to be used. In the past decade, single-human and single-action

datasets have been the most popular, such as Weizmann (Blank et al., 2005), KTH

(Schuldt et al., 2004). As the robust methods for recognition of a single-action and

single-human activities matured, datasets capturing multiple people interaction

with uncontrolled illumination conditions and a non-static background became

available. Examples of such datasets are: CAVIAR (INRIA, 2004), HOLLYWOOD

(Marszalek et al., 2009), ETISEO (INRIA, 2011), i-LIDS (U.K. Home Office, 2011).

Event detection datasets used in this project are specific to visual surveillance

applications, where video data is assumed to be captured by a static camera,

captured scenes depict multiple objects acting at the same time and the amount of

data to process is unlimited. An in-house dataset is created to test the proposed

algorithms with a dataset depicting the targeted application environment. In

addition, benchmark datasets (CAVIAR and i-LIDS) are used to evaluate the
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algorithms in order to be able to compare the results to other approaches in the

literature. (Maciejewski et al., 2009) - evaluating visual analytics techniques

2.7 Overall Conclusions

Machine learning approaches for event classification are grouped into supervised

and unsupervised. Most of the surveillance applications use supervised ap-

proaches, while unusual event detection applies either unsupervised approaches,

or a mixture of supervised and unsupervised approaches. Most of the event

detection approaches targeting surveillance applications in the literature apply

supervised classification techniques where a model for a list of predefined activ-

ities is learnt from a number of representative examples. In addition, most of

the approaches that target surveillance applications take video segments rather

than continuous video stream. They also rely on the object detection and track-

ing techniques. Those techniques are not reliable in real world environments.

On the other hand, unusual event detection approaches tend to focus on more

real-world friendly methods. Unusual event detection approaches usually rely

on the training data statistics, as they do not require detection and modeling of

specific events. Two approaches of unusual event detection are the most popular.

First, number of classes of the events are learnt, and anything that is different

from those classes are marked as unusual. Therefore, the unusual class is not

predefined, and its values are not fixed to certain scenarios. The second approach

is based on learning of a multi-modal representation of the usual environment

without learning specific or predefined activities.

Event representation approaches can be grouped into low-level and the high-

level representations. Some event detection techniques approaches apply only

low-level representation and classify events based on their distribution across

temporal and spatial dimensions. The other approaches apply higher level repre-
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sentations. Higher level representations require more precise knowledge about

the event than the low-level representation.

Standard evaluation of event detection or recognition results is through the

ROC curves. As the unusual event detection problem deals with the unbalanced

data, the PR curves might give a better indication of the results.

The thesis focuses on the combination of the known approaches that conforms

to the real-world environment. The real-world environment is defined by a

continuous stream of data and the absence of the training data or specifications

of events in the captured environment. In the literature, the relevant approaches

have been used separately, whereas in this thesis we combine and test relevant

approaches as a complete system.

2.8 Summary

The chapter discussed the techniques proposed in the literature related to unusual

event detection in visual surveillance. The overview of the state-of-the-art visual

surveillance solutions showed that the main focus is on detecting predefined

events, trained from a database of similar events. From a huge variety of event

description techniques, the most applicable to the variety of real-world applica-

tions are the localized techniques. From the huge variety of training techniques, a

subset for unusual event detection is identified. The literature reviewed in this

chapter outlines the possible solutions for different steps in the unusual event

detection framework proposed in the previous chapter (see the flow diagram in

figure 1.1). The details of the approaches most relevant to this thesis are further

investigated in the next chapter.
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Chapter 3

A baseline approach to unsupervised

event detection

3.1 Overview

In this chapter the event detection pipeline, described in chapter 1 (Figure 1.1), is

implemented as a baseline unusual event detection system. It was identified that

real-world systems require invariance to the captured environment, simplicity

in initialization and stability of algorithmic complexity with increasing amounts

of data. These requirements are taken into account when choosing the methods

for the steps in the pipeline whereby unsupervised on-line learning is applied

together with an adaptive thresholding approach for decision making. The un-

usual event detection pipeline is applied to continuous data captured over an

extended period of time where video data used for training contains unknown

activities. The sole assumption is that if there are unusual events in the dataset,

then they are rare. The novelty of this approach is the limited amount of user

input used to define the parameters of the algorithms. The use of multiple days

of unconstrained continuous video data captured 24 hours a day is also novel.

To evaluate the system a number of unusual behaviours were performed by vol-
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unteers and captured in the dataset. Evaluation of the results obtained helps to

guide the subsequent studies and the evaluation methodology for more advanced

approaches in later chapters.

3.2 Baseline System

In real-world surveillance applications, it is not viable to foresee every possible

event and the nature of events depends on the application. An unusual event

defined in one environment might be a usual event in a different environment.

For example, people walking in the university campus are part of the usual scene,

while people walking on the motorway should trigger an alarm as it would be an

indication of an incident. Nevertheless, if, for example, there are roadworks on

the motorway, people walking would become a usual event over time.

Modeling of events under these conditions is a challenging task. In the litera-

ture, event detection approaches tend to address only some of the requirements

for processing real-world surveillance data. The focus of this study is to combine

the relevant approaches from the literature corresponding to each of the steps

in the event detection diagram defined in Figure 3.1 so that all parts are in line

with real-world requirements. A number of relevant papers are identified and

compared in order to identify the most applicable approaches to the various parts

comprising the overall system. The papers are listed in Table 3.1.

The baseline unusual event detection system allows a general event-based

analysis of video information containing unknown event types. In particular,

focus is on surveillance applications where the environment and the context may

vary significantly and unpredictably with different camera setups. Thus, it is not

optimized for the detection of a specific action. The proposed baseline unusual

event detection system is trained using an on-line agglomerative clustering algo-

rithm where the model of normality is constructed in a fully unsupervised manner.
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Figure 3.1: Event detection flow-diagram

It is also adaptive, which helps to avoid the model becoming outdated with the

long term running of the algorithm. The model of usual activities is continuously

updated with the incoming data instances that are classified as usual. The base-

line unusual event detection system is described with respect to the data-flow

diagram of video event detection in Figure 3.1. Following the diagram, incoming

video frames are first grouped into temporal segments, then descriptors are extracted

from each segment to represent the segments with feature vectors and a classifier

is trained using the feature vectors extracted from the training videos. After the

training is over, classification is carried out on new data that is also grouped into

temporal segments and has descriptors extracted to form feature vectors. These

feature vectors have the same representation as the training data feature vectors.
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Reference Type of data
Nam and Hong (2014) Crowd activities
Huo et al. (2014) Crowded escape events (UMN); Motion on the busy

pedestrian walkway (UCSD)
Ouivirach et al. (2013) Pedestrian and cyclists activities on the pathway near

the entrance to a building
Mudjirahardjo et al.
(2013)

Tracking pedestrians in uncluttered environment

Feng et al. (2012) Surveillance video dataset; Subway
Matsugu et al. (2011) Capture uncluttered scenes of people walking; Tennis

match
Lecomte et al. (2011) Audio recordings from subway mixed with audio

recordings of 27 different categories
Mahadevan et al.
(2010)

Motion on the busy pedestrian walkway (UCSD)

Loy et al. (2010) Traffic motion in two road intersections captured with
distant cameras

Kim and Grauman
(2009)

Activities at the entrance and exit gates of the subway

Breitenstein et al.
(2009)

Activities captured by the distant webcam overlooking
the Time Square in New York; environmental changes
captured by the camera overlooking a lake

Sillito and Fisher
(2008)

People behaviour in the entrance lobby of the univer-
sity

Basharat et al. (2008) Pedestrian and vehicle motion trajectory based activi-
ties

Xiang and Gong
(2008)

Activity in the corridor that has a restricted entry to
the office

Andrade et al. (2006) People behaviour in the entrance lobby of the univer-
sity

Xiang and Gong
(2005)

Activity in the corridor that has a restricted entry to
the office

Boiman and Irani
(2005)

Motion of the limbs of a single person captured in a
single spot

Hamid et al. (2005) Packet delivery activity in a loading dock area of a
retail bookstore

Zhong et al. (2004) Unusual motion patterns in a nursing home eating
area, on the road and at the poker table

Table 3.1: Unusual event detection state-of-the-art research
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3.2.1 Temporal segments

Depending on the nature of the video sequence to be processed, various segmen-

tation approaches can be adopted. The most common assumption in the literature

is that the events are pre-segmented based on semantic interpretation (Hamid

et al., 2005; Sillito and Fisher, 2008; Basharat et al., 2008; Mahadevan et al., 2010).

The segment boundaries in these approaches are usually found manually through

laborious previews and examinations of the visual data or by recording event

data only.

In some frameworks, a decision as to whether an unusual event happened

is made in every frame. This approach does not require temporal segmentation

of video data. Here, either only spatial anomalies are considered as in (Breiten-

stein et al., 2009) and (Sudo et al., 2008), or temporal information is included by

representing video data using optical flow statistics as in (Kim and Grauman,

2009). If the data to be processed is known to have low volumes of activity, the

non-activity gaps between two consecutive behaviours can be used to segment

the videos as in (Xiang and Gong, 2005, 2008), and (Ouivirach et al., 2013). This

approach saves a lot of processing power if there are many motionless scenes

in the dataset. The drawback of implementing this approach in real-world ap-

plications is that the event has to be finished to allow the segment to be further

processed, in other words, non-activity occurring after the event defines the end

of the event. Furthermore, if the motionless periods are not present between

the events, the consecutive events would be merged into one event and would

cause incorrect interpretation by the event detector. Another approach is to divide

video sequences into non-overlapping (Loy et al., 2010; Andrade et al., 2006) or

overlapping windows (Zhong et al., 2004). The non-overlapping segments might

fail to capture the important aspects of events that fall between the boundaries of

the segments and the overlapping windowing technique solves this issue. In the
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windowing approach, the choice of window size is important. Algorithms can be

implemented in multiple scales to avoid choosing a window size.

Taking into account the continuous nature of real-world surveillance video

data, the most appropriate approach to temporal video segmentation is to use

windowing with an overlap. In the implementation of the baseline system, this

approach is applied. A continuous video sequence V is segmented into N video

segments V = v1, v2, ..., vN such that ideally each segment contains a single be-

haviour pattern. The nth video segment vn consists of Tn image frames represented

as vn = {In1, In2, InTn}where Int is the tth image frame of vn. The overlap between

the segments fo can take values 0 ≤ fo < Tn. The best representation of the

data would be achieved by choosing fo equal to Tn − 1 which would create a

sliding window with a step of a single frame, but smaller values can be adapted

to minimize computational power required.

3.2.2 Feature vectors

Spatial and temporal information is required for a discriminative representation

of the video events. Only spatial descriptors are used in the unusual event

detection task in (Sudo et al., 2008) and (Breitenstein et al., 2009). To represent

video events spatial information alone is usually not sufficient because events

occupy a duration of time.

Bobick and Davis (2001) introduced an event representation based on temporal

motion templates. A temporal template consists of two object motion representa-

tions. The first representation is captured in a motion energy image (MEI):

Er(x, y, t) =
τ−1⋃
i=0

D(x, y, t− i) (3.1)
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The second representation is captured in a motion history image (MHI):

Hτ (x, y, t) =

 τ if D(x, y, t) = 1

max(0, Hτ (x, y, t− 1)− 1) otherwise
(3.2)

In both equations τ defines the temporal extent of the movement and D(x, y, t) is

the binary image sequence indicating regions of motion. The temporal motion

template is summarized using image moments where statistical moments of the

temporal templates are extracted to represent events. Xiang and Gong (2005,

2006, 2008) used these descriptors for visual behaviour profiling and abnormality

detection in an entrance scenario captured with a directed camera located at a

close proximity. This approach provides an accurate representation of clearly

defined events captured in an uncluttered environment but it relies on the accurate

detection of the shape of the moving object.

Motion trajectories have provided the basis for a large body of work on auto-

mated surveillance. The trajectories result from tracking the movements of objects

over time. Sillito and Fisher (2008) represented trajectories by a vector of cubic

spline control points. Basharat et al. (2008) represented object trajectory points

Oj by five dimensional vectors Oj = (t, x, y, w, h), where t is a time stamp of

observation, (x, y) is object location at that time, and (w, h) is the size of an object.

Ouivirach et al. (2013) track multiple objects in the scene using an appearance-

based blob tracking algorithm. They implemented procedures for handling stale

objects (objects that are inactive for a long time), merging and splitting of the

moving objects. In addition to the time, location and object size, trajectory points

are represented by the aspect ration of the object’s bounding box and its speed. A

temporally smoothed version of the object’s speed is calculated using:

vj = r

√
(xt − xt−1)2 + (yt − yt−1)2

δt
+ (1− r)vt−1 (3.3)
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where r is a constant, δt is the time difference between the frames at t and t− 1.

In this approach, the object is tracked over time, and the normalized shape of the

trajectory is used to define the events. This approach requires accurate tracking

techniques which is still a challenging task in unconstrained environments such

as surveillance applications.

To avoid explicit tracking of the objects in the camera view, the motion of all

the pixels in the frame can be defined by their optical flow. Andrade et al. (2006)

combined optical flow information with the foreground mask and only the flow

vectors inside the foreground objects are further considered. Principle component

analysis (PCA) is performed on the optical flow fields of each frame to reduce the

dimensionality of the features. Optical flow observations are used by Kim and

Grauman (2009) where each image pixel is represented by a 9-dimensional optical

flow vector comprising of 8 orientations and a speed value. Each video frame is

divided into u by v sub-regions and the optical-flow within each region is obtained

by summing the flow from all the pixels with it. Each frame is represented by

a 9 · u · v dimensional activity descriptor. A similar approach is taken by Loy

et al. (2010) where optical flow is extracted in each pair of consecutive video

frames followed by the decomposition of each frame into D regions according to

spatial-temporal distribution of motion patterns. Each pixel is represented by 4

motion orientations and the co-occurrence histogram of the four orientation is

constructed for each region. Optical flow representations are widely used, but

caution must be taken as optical flow vectors of each pixel incorrectly represent

homogenous regions and the components along the edges are missing due to the

aperture problem.

Motion information was computed via spatio-temporal filtering by Zhong et al.

(2004). Motion information in each frame It(x, y, t) is found by the convolution

of the image with a temporal Gaussian derivative filter Gt = te
−( t

σt
)2 and the

spatial smoothing filter Gx,y = e
−( x

σx
)2+( y

σy
)2 . Video frames are represented by a
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spatial histogram where the frame is divided into a spatial grid and the motion in

each grid is accumulated into histogram bins. Another type of representation is

used by Mahadevan et al. (2010), where events are represented by the mixtures

of dynamic textures (MDT) combined with the discriminant saliency criteria

for spatial abnormalities. A dynamic texture is a generative model for both the

appearance and the dynamics of video sequences. This type of representation

is valuable in crowded environments where objects are not separable from each

other.

In the baseline implementation of the unusual event detection system, the

focus is on meeting the conditions for a real-world unusual event detection

system and interconnection of the various processing blocks. Descriptors chosen

for events in the baseline unusual event detection system are spatio-temporal

representations obtained by accumulating motion estimates over the frames and

concatenating them temporarily. The motion in video segments is estimated

by modeling pixels using a mixture of Gaussian (MOG) background modeling

technique proposed by Stauffer and Grimson (1999). Each pixel in the frame is

modelled using K weighted Gaussian distributions that represent the intensities

of that pixel. The pixel values that have low probabilities of being generated by

the created model are declared as foreground. The probability of observing the

pixel value Xt at a time t is evaluated over all Gaussians for this pixel:

P (Xt) =
K∑
i=1

ωi,t ∗ N (Xt, µi,t, σi,t) (3.4)

where K is the number of Gaussian distributions, ωi,t is the weight estimate, µi,t

is the mean, and Σi,t is the covariance matrix of the ith Gaussian at time t. The

parameters of the Gaussian distributions are updated at a run-time for each pixel
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value Xt as follows:

µk,t = (1− ρ)µt−1 + ρXt

σ2
k,t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt)

ωk,t = (1− α)ωk,t−1 + α(Mk,t)

(3.5)

where α is a learning rate; Mk,t is 1 for the model which matched, and 0 for

the remaining models. A match is defined as a pixel value within 2.5 standard

deviations of the distribution.

The run-time update allows the model to adapt to gradual changes of the

environment. The foreground pixel values are thresholded over each frame:

Xm,t = P (Xt) ≤ mth (3.6)

where Xm,t is the binary motion mask with 0 representing no motion and 1 repre-

senting motion pixels; mth represents the threshold applied to the probabilities

of each pixel to belong to the background. Accumulated motion in each frame is

used to represent the frame:

ft =
∑

Xm,t 6= 0 (3.7)

where ft is the number of foreground pixels in the frame at the time t and Xm,t

is a binary motion mask. The final representation of each frame by accumulated

motion estimation is achieved by combining the motion identified using MOG

approach and accumulated over entire frame. Using this representation both spa-

tial and temporal information is captured and has low computational complexity.

This representation is suitable to differentiate between activities such as entering,

exiting, running, loitering, or fighting. Figure 3.2 illustrates a sample feature

vector from a typical indoor surveillance scenario. A single segment of 15 seconds

57



long captures a person crossing the corridor. The peak in the signal representation

depicts the person appearing close to the camera, and the decreasing slope shows

the person moving into the distance from the camera. A sequential combination

of frames can differentiate between information such as direction of a person

walking through the corridor, speed and amount of time spent in the scene. The

(a) Video Features

(b) T1 (c) T2 (d) T3 (e) T4

Figure 3.2: 15 seconds video segment of a person walking through the corridor. It
starts with opening of the doors (T1). As a person walks away from the camera
(T2 to T3), the distance from the camera is represented in the curve.

descriptor carries no information about spatial location of the object or number

of objects acting in the scene and this limits this approach to the representation

of scenes where a single activity is present at each moment in time. Therefore, a

more complex environment would require a more detailed representation of the

visual scenes.
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3.2.3 Training

Based on the representation extracted from the raw video data, events are modeled

using machine learning techniques. The techniques adopted in the literature for

unusual event detection can be divided into semi-supervised and unsupervised.

Supervised approaches are adopted for the detection of events that are known

in advance. These approaches require well defined scenarios with a set of good

representative examples to train the models. Due to these requirements, these

approaches are not usually applied for unusual event detection.

A semi-supervised approach is used by Xiang and Gong (2005, 2008), where a

model of the behaviour classes is created using Multi-Observation Hidden Markov

Model (MOHMM) where a number of hidden states for each hidden variable is set

to the number of event classes. A number of classes is predefined but the training

samples belonging to each of the classes are found in an unsupervised way via

clustering. Andrade et al. (2006) applied the same learning principle, where a

spectral clustering algorithm is used to gather video segments into groups and

a MOHMM is applied to train the models representing a normal event and a

blocked-exit event. Sillito and Fisher (2008) applied a one-class learning algorithm

based on Gaussian mixture model (GMM) where at the early stage of training the

underlying distribution is modeled by placing a Gaussian kernel function on each

training data item. When a new data item arrives, a new component is added to

the model and a pair of components that are most similar are merged. Similarly,

Sudo et al. (2008) created a model of the usual class using one-class support vector

machine (SVM). The One-class SVM approach yields a discrimination axis that

maximizes the distance of all samples from the origin except outliers. Another

semi-supervised training approach is used in (Hamid et al., 2005), where a set of

activities are considered as an undirected edge-weighted graph with K nodes,
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each node representing an activity descriptor. Activities that do not belong to the

trained model are defined as unusual.

Fully unsupervised approaches are different from semi-supervised approaches

as they do not assume any knowledge about the training dataset except the

assumption that only a small percentage of the data belong to the unusual class.

A spatio-temporal saliency in the video is defined as an unusual event by Boiman

and Irani (2005). They applied a graph based Bayesian inference algorithm. With

every new data instance y, the joint likelihood P (x, y) = P (y|x)P (x) is estimated

between the new element and the model. P (x) is estimated non-parametrically

directly from the data. Kim and Grauman (2009) used a mixture of probabilistic

principal component analyzers (MPPCA) to identify the typical patterns. A

space-time Markov random field (MRF) is defined in terms of two functions: the

node evidence and the pair-wise potential. The inference on the graph yields

the maximum a posteriori (MAP) that specified which nodes are abnormal, as

computed by maximizing:

E(x) = λ
∑
i

n(xi) +
∑

i,j∈neighbour

ρ(xi, xj) (3.8)

where n(·) is the node evidence function, and ρ(·, ·) is a pair-wise potential func-

tion. The value λ is a constant to weight the node evidence, and xi denotes the

label telling whether the node is normal or abnormal. Basharat et al. (2008) ap-

plied a GMM to model the motion trajectories extracted from the training dataset,

and the data that have low probabilities to be part of the model are identified as

atypical. Each component of the mixture is modelled as a Gaussian distribution

of the form:

p(γ|Θi
l) =

1

(2π)d/2|Σi
l|1/2

e−1/2(γ−µil)
TΣi−1

l (γ−µil) (3.9)
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where d is the dimensionality if the model and Θi
l = µil,Σ

i
l. An unsupervised

approach is applied by Zhong et al. (2004), where clustering based on the co-

occurrence matrix is applied to model the entire dataset without separation

between training and testing data. A bipartile graph co-clustering, similar to

the normalized cuts algorithms used in image segmentation, is applied to the data.

Isolated clusters are identified as unusual events. Another clustering approach is

used for unusual event detection by Breitenstein et al. (2009), where agglomerative

clustering algorithm of 10000 clusters is used to model the usual scenes and the

unusual scenes are identified by measuring and thresholding their distance to the

model.

The approaches to model events can also be classified based on the way the

training data is used to train the model. There are two main groups of approaches,

namely batch and online approaches. In more recent works, incremental updates

into the learning process are integrated (Sillito and Fisher, 2008; Xiang and Gong,

2008; Sudo et al., 2008; Kim and Grauman, 2009; Breitenstein et al., 2009). A

mixture of batch and online approaches is used by Loy et al. (2010) and Ouivirach

et al. (2013). In the combined approach the initial classifier is trained using a small

set of labelled samples from the known classes, and then further updated in an

online manner with the unknown data. Xiang and Gong (2008) showed that when

incremental learning is applied, the classification results are less than a percent

lower. A CCTV camera was mounted on the ceiling of an office entry corridor,

monitoring people entering and leaving an office area. The identification of six

activities, such as entering from few different entrance locations and exiting by

entering the lab or through the door at the end of the corridor, showed results

as high as 80%. Sillito and Fisher (2008) reported accuracies as high as 90% on

identifying outlier trajectories of people walking in the carpark. Loy et al. (2010)

used a more complicated MIT traffic dataset defined in (Wang et al., 2009b) and

reported accuracies of around 70%. It can be seen that the results do not suffer
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when the online training is applied, but the results are highly dependent on the

complexity of the dataset. Unusual events in crowded scenes were analyzed

by Nam and Hong (2014) and Huo et al. (2014), and accuracies reported varied

from 75% to 99% depending on the complexity of the scenarios. Because accuracy

measures are highly dependent on the complexity of the dataset, many researchers

choose to report only qualitative results (Mudjirahardjo et al., 2013; Matsugu et al.,

2011; Breitenstein et al., 2009).

Considering the nature of the surveillance data where information about usual

and unusual events is not easily obtained in advance, and huge amounts of data

have to be processed, an unsupervised on-line training approach is preferred.

Based on the accuracies of the results reported, in the baseline unusual event

detection framework an online agglomerative clustering algorithm is applied

to model usual scenarios. Deviations from the model are considered to be the

unusual events. The algorithm is adapted from Breitenstein et al. (2009) where

it was used to learn the model of usual scenes of Times Square in New York.

This approach does not rely on an a priori knowledge and works well with

non-stationary data (Guedalia et al., 1999).

The model is represented by K clusters. The parameter K is chosen base on

the complexity of captured environment. The more diverse the captured scenes

are, the more clusters are required for the model. Each cluster k is defined by the

parameters µk, nk and ak corresponding to the cluster centroid, element count and

age respectively. The clustering is implemented in the following steps:

1. Initialize first K clusters using the first K data points x1, x2, ..., xK . Parame-

ters of each cluster k are initialized to the values: µk = x, nk = 1 and ak = 1.

The rest of the data xl, where l = {K+ 1, ...N}, N is the number of instances,

and K is the number of clusters in the model (note that first K elements are

already used), is processed as follows:
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2. Form a new cluster from the xl data point and initialize its parameters:

µk+1 = xl, nk+1 = 1 and ak+1 = 1

3. Find the redundant clusters whose representation of the data is the most

similar:

{i, j} = arg min
i,j,i6=j

||µj − µi|| (3.10)

4. The cluster with the smaller weight w (lets assume it is i) is merged into the

other cluster (j) by updating its centroid µi and count ni:

µj = µj · (1− α) + µi · α

nj = nj + ni

(3.11)

where α is the learning rate which controls the adaptation speed to the

latest observations; wi is the weight of the cluster and is defined by a ratio

between the number of elements that matched the cluster ni and the age of

that cluster ai: wi = ni
ai

.

5. The weaker cluster (j) is removed from the model.

6. set l = l + 1 and go to 2

In this clustering approach, cluster centers are only removed when a nearby

cluster center exists, and the removed cluster center represents something that

has not been observed for a long time (ak � nk). The cluster center that is distant

to every other center remains in the model. Removal of the old and rare clusters

can be implemented by eliminating the clusters with weights less than a threshold

thw.

To make sure that the model is not affected by unusual instances, a threshold is

introduced before step 2. If the minimum distance between the cluster centers µk

in the model and the data point xl is higher than the threshold arg min
k

||µk−xl|| >
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tha, then the model is not updated with this data point and the data point is

marked as an outlier. The threshold can be chosen empirically, but for a real-

world application it needs to be set automatically.

3.2.4 Classification

To decide whether an unseen feature vector represents an unusual event is left

to the classification step. In the unusual event detection system, if the model of

unusual events is created using the clustering approach, the decision is made by

thresholding the distance from that model to the unseen data (Zhong et al. (2004),

Hamid et al. (2005), Sudo et al. (2008) and Breitenstein et al. (2009)). If a statistical

model is used, the maximum log likelihood is used for classification (Boiman and

Irani (2005), Xiang and Gong (2005), Andrade et al. (2006), Sillito and Fisher (2008)

and Ouivirach et al. (2013)). The distance and the log-likelihood measures need

to be thresholded to acquire binary result. Most of the unusual event detection

approaches do not produce a binary results (Dee and Hogg (2004), Zhong et al.

(2004), Sudo et al. (2008)). Some approaches calculate the threshold from the data

(Andrade et al. (2006), Breitenstein et al. (2009), Ouivirach et al. (2013)). All the

rest of the methods find the threshold through experimentation.

In real-world surveillance scenarios, it is preferable to avoid setting a static

threshold. In the baseline unusual event detection system, the distance between

the model created by the online agglomerative clustering algorithm and the new

data instances is evaluated for decision making. The system is implemented with

adaptive calculation of the threshold which was proposed by Breitenstein et al.

(2009).
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3.3 Dataset

Different datasets are available for testing algorithms for unusual event detection.

Some unusual event detection algorithms are tested on outdoor video data such

as traffic datasets (Zhong et al. (2004), Basharat et al. (2008), Breitenstein et al.

(2009), Loy et al. (2010)), pedestrian dataset (Ouivirach et al., 2013), and web-cam

footage overlooking a lake (Breitenstein et al., 2009). Indoor datasets, used for

unusual event detection, range from subway staircase video footage (Kim and

Grauman, 2009); video of the activities in a dining room (Zhong et al., 2004);

entrance to a restricted area (Xiang and Gong, 2005, 2008); docking area of a retail

bookstore (Hamid et al., 2005); footage of people playing cards (Zhong et al.,

2004); a collection of well defined actions acted by a single or multiple persons

(Boiman and Irani, 2005), Sudo et al. (2008). Most of the surveillance-like datasets

are captured and annotated specifically for the experiments. Sharing of those

datasets is often restricted by privacy protection laws due to the appearance of

ordinary people in the footage.

Table 3.2 lists the datasets commonly used by researchers as benchmark

datasets for testing event classification algorithms. TRECVID datasets contain

videos from half a minute (BBC stock shots) to 48 minutes (recordings of lectures).

The AVSS dataset contains fully annotated data of multiple scenarios approxi-

mately half an hour each. The scenarios are: abandoned baggage in the metro

station, parked vehicle on the road from a far-view camera, audio-visual people

detection and tracking dataset captured in the lecture rooms of Queen Mary Uni-

versity of London, and face recognition datset. and PETS datasets are provided for

participants of the yearly conferences for challenges in motion tracking in a single

or multi-camera set-ups and detection of objects in challenges related to visual

surveillance. Scenarios of interest in those datasets are: left-luggage, detection

and tracking scenes on water, tracking of football players, smart meetings, indoor
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Name Details Reference
TRECVID
(2001-2007)

Broadcast news videos, airport surveillance
videos

(TRECVID,
2007)

AVSS 2007 Abandoned baggage, parked vehicle, audio vi-
sual people, face datasets

(AVSS, 2007)

AMI 2007 Meeting environment, different roles in team, cre-
ating projects

(AMI, 2007)

OTCBVS
2007

Person detection in thermal imagery, facial
dataset, weapon detection, thermal and color fu-
sion

(OTCBVS, 2007)

PETS
(2000-2006)

Outdoor people and vehicle, indoor people track-
ing, hand postures, smart meetings, facial ex-
pressions, gestures, football data, tracking scenes
on water, detection of luggage events in public
spaces

(PETS, 2006)

CANDELA
(2003-2005)

Abandoned objects, people hanging out in livin-
groom; pedestrians crossing the street

(CANDELA,
2005)

CAVIAR
(2003-2004)

People walking alone, meeting with others, win-
dow shopping, entering and exiting shops, fight-
ing and passing out and last, but not least, leaving
a package in a public place...

(INRIA, 2004)

UCSD 2010 Crowded pedestrian walkway with unusual
event such as a cart, wheelchair, skateboarder
or a bicycle passing the pedestrian flow

(UCSD, 2010)

I-LIDS 2011 Abandoned baggage, parked vehicles, doorway
surveillance, sterile zone monitoring, multiple
camera tracking

(U.K. Home Of-
fice, 2011)

Table 3.2: Freely available computer vision datasets

and outdoor people tracking, vehicle tracking. As most of the benchmark datasets,

the data is separated into individual clips approximately half a minute long. The

OTCBVS dataset contains far-view footage of pedestrians captured using stan-

dard and thermal cameras. The dataset contains clips captured at three different

locations, and the fully annotated clips are approximately half a minute long. The

AMI dataset contains video and audio data collected in a meeting environment.

An approximate duration of the clips is 30 minutes, and the collection has 100

hours of meeting recordings in total. Project CANDELA has publicly shared

datasets from indoors and outdoors for detection of people and cars. UCSD is
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the benchmark dataset introduced by University of California at San Diego for

outlier motion detection. I-LIDS dataset comprises of approximately 24 hours

of sequences recorded in different conditions such as different time of the day,

weather, background activity levels. This dataset matches the test requirements

for the baseline unusual event detection system, but due to licensing restrictions it

was not available during research. The experiments on this dataset are conducted

towards the end of the project. None of the rest of the publicly available datasets

are suitable for experimental purposes for the proposed baseline unusual event

detection system. Even though various environments are captured in the available

datasets to make them appropriate for comparing different systems, the datasets

are the collections of individual video clips up to 30 minutes long. To test the

proposed baseline unusual event detection system a continuous data stream is

required of ideally one full day of continuous data for training and few hours of

data for testing. A custom data capture infrastructure was built to evaluate the

baseline unusual event detection system. The infrastructure is depicted in Figure

3.3. The infrastructure consists of a camera placed in the corner of the corridor so

that the entire corridor could be captured. Wide angle field of view (140 ◦) of the

camera lenses provides slightly distorted view of the captured area but allows

to cover the entire corridor. Example video frames can be seen in Figure 3.4 and

the specification of the camera can be accessed from the manufacturers website1.

Illumination changes caused by the weather captured through the windows and

the movement outside the windows creates a challenging environment for any

type of visual analysis but provides a suitable representation of real-world surveil-

lance video data where such challenges are often present. The data was collected

over a period of 30 days in August, 2009, captured 24 hours a day, at 15 frames

per second frame-rate. The dataset is also challenging due to the amount of data

that needs to be processed. The size of the frames was set to a standard frame size

1http://www.axis.com/products/cam_212/index.htm
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Figure 3.3: The capture environment. Camera location is indicated by
⊗

; the
grayed area represents camera field of view; there are four ways to access the area
- doors at both sides of the corridor and the two entrances to the laboratories.

Figure 3.4: Sample video frames from one day

of 640× 480. To comply with privacy rules, signs indicating live data capturing

were placed at the entrances to the monitored area.

To lower the computational overhead, the original data is sub-sampled to 1

frame per second. Five days of captured data were used to train the model (120
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hours) and three days (72 hours) were used for testing. In total, 691.2 thousand

of frames were used in experiments. The weekends were excluded from the

experiments because the data capture location was almost empty during those

days. Cross validation was not performed for the baseline experiments, but the

detail examination of each step in the algorithms is performed in the further

experiments. Testing data included unusual and antisocial events of interest that

were performed and simulated by actors.

3.4 Evaluation of Results

The system parameters are set to the following values. The temporal segment

size is set to be Tn = 15, which corresponds to 15 seconds of the video data (at

the rate of 1fps). The segment size is chosen by visually evaluating the duration

of visual events in the captured environment. It takes 15 seconds for a person to

cross the corridor by walking. The events lasting longer than a single segment

are captured by concatenating overlapping consequent segments. The overlap

between consecutive segments is set to be 2
3
Tn. A motion threshold mth is set to

be 0.15 which is empirically chosen through experimentation. Motion threshold

is the parameter that contributes to the sensitivity of the overall system and has to

be chosen carefully. The number of clusters constituting the model representing

usual scenarios is set to be 100. This number is also chosen through empirical

tests. The effect of different parameters on final results is evaluated in later

chapters of the thesis where more detailed evaluation of each processing step

is provided. Event detection is performed on the feature vectors representing

overlapping temporal data segments. The distance between the model and the

test data instances is binarized with the threshold inferred from the data itself.

To count the number of unusual events detected by the system the consequent

69



segments are grouped into events and the event is marked as a true positive if at

least 50% of its frames fall into the segments marked as unusual.

To evaluate the proposed baseline unusual event detection system, its ability

to detect the ground-truth events is assessed. The ground-truth data consists of

16 unusual or antisocial scenarios performed by 10 people. The scenarios covered

events such as running, jumping onto the window-sill, fighting, etc. The full list of

the scenarios and the detection results can be seen in Table 3.3. The ground-truth

unusual scenarios occupied 26.65 minutes of the overall testing data.

Event detection accuracy is calculated based on the assumption that the

ground-truth event is said to be detected if at least 50% of the event frames

fall into the segments classified as unusual. Fourteen out of sixteen predefined

unusual events were correctly identified as unusual by the algorithm, therefore

88% accuracy is reported. Table 3.3 shows the summary of the ground truth

events and the results of the unusual event detection system where the symbol X

means that the event was correctly identified as unusual, and the symbol 7 means

that the event was missed by the system. Two events that were not detected are

running to the lab and a person standing on his head. Further examination of these

events showed that running was performed at a very slow pace and was not so

different from walking which is a usual event in the captured environment. The

second event was missed due to the event representation used. The descriptors

used in the experiments could not differentiate between somebody standing on

their feet and standing on their head because the information of the pose is not

included. In addition to the ground-truth events that are detected as unusual, 300

additional unusual events were also detected, which is approximately 4 events

per hour. This shows that even though most of the interesting events are detected,

the false positive event detection rate is too high for real world environment.

The investigation of the falsely detected events showed, that these events are

identified mostly due to illumination changes caused by the weather conditions,

70



Scenario Duration Result
Two people fighting 15sec X
Someone putting a poster on the wall 4min 15sec X
Shouting and fighting 15sec X
Climbing on the window sill 10sec X
Running to the lab 30sec 7

Tearing the poster from the wall 40sec X
Bullying/intimidation 1min 05sec X
Waving to the camera 15sec X
Attempt to enter a laboratory 30sec X
Football in the corridor 1min 05sec X
Bringing in a ladder, climbing on it 5min 30sec X
Arguing near the lab door 10min 50sec X
Running through the corridor 10sec X
Someone standing on his head 30sec 7

Leaving something in the corridor 9sec X
Removing something from the corridor 30sec X

Table 3.3: List of scenarios and detection results

namely sunny days with clouds. The reason why the illumination changes were

identified as unusual events is that very different weather conditions were present

during the training period. To address this issue, training could be performed

over days with more varying weather conditions. Furhtermore, descriptors that

include intensity information would help to eliminate most of the false positives.

3.5 Conclusions

A real-world surveillance environment poses requirements that are addressed in

the proposed baseline unusual event detection system. The proposed baseline un-

usual event detection system is deliberately simple compared to other approaches.

It is focused on specific aspects of the overall pipeline yet showed promising event

detection results when tested on surveillance-like dataset created specifically for

the evaluation of the system. Two ground-truth unusual events were missed, and

the false event detection rate was approximately four events per hour. Clearly, the
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event descriptors are over-simplistic and might fail in scenarios where the scenes

are not restricted to having a single activity in the camera view. The following

experiments in this thesis consider each part of the system to identify the most

relevant methods.

3.6 Summary

In this chapter, a complete unusual event detection pipeline was introduced and

applied to visual surveillance data that meets the requirements of real-world

settings. An unsupervised training technique with an on-line learning capability

is applied to model the environment. An adaptive thresholding technique is

applied to detect unusual events. The promising results showed that 88% of

the ground-truth interesting events were detected using simple spatio-temporal

visual features. A relatively high false alarm rate obtained is determined to be due

to the overly simplistic descriptors. The focus of the next chapter is on finding

suitable video event descriptors for surveillance applications.
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Chapter 4

Visual descriptors for event

representation

4.1 Overview

Visual event detection accuracy depends on the descriptors extracted from the

sequences of video frames. In order to describe video events, continuous video

data must first be segmented into temporal segments followed by the extraction

of descriptors from each identified segment. The process of extracting descriptors

can be further divided into two steps. First, objects or interest points have to be

identified, followed by extraction of discriminative representation for each of

them. In this chapter, the definition of events is first formulated, and a taxonomy

of various event description approaches is discussed. Local spatio-temporal

region properties are argued to be a suitable representation of visual events in

unconstrained visual environments. As a result, five local-region description

methods are compared, and the best performing one is identified as the most

suitable for targeted applications. Experiments are also conducted to test the

temporal segmentation techniques. Based on the overall experimental results,
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the most suitable visual event description scheme to identify events in visual

surveillance applications is proposed.

4.2 Definition of Visual Event

Understanding of visual events is a research topic that has received much interest

in recent years. Visual events are those high-level semantic concepts that humans

perceive when observing a video sequence. The major challenges in this research

area are defining what a visual event is and translating raw video data into

semantically meaningful descriptions of the defined events so that it could be

easily classified using machine learning techniques. The meaning of the term

“visual event” can be ambiguous and depends on the context. Three characteristics

that define a general visual event in different application domains were defined

by Lavee et al. (2009):

1. Visual events occupy a period of time;

2. Visual events are built of smaller building blocks;

3. Visual events are described using the salient aspects of the video sequence

input;

Taking into account this abstraction, in a particular visual event each of these

qualities can be explicitly instantiated. For example, in a gesture recognition task,

motion of a hand can be treated as a single visual event. In visual surveillance

applications, an event could be as specific as “opening the door”, or as abstract as

“antisocial behaviour”.

Ahad (2011) proposed a hierarchical taxonomy of visual events where the

events are grouped depending on the duration of time they occupy. Figure 4.1

visualizes a variant of this taxonomy where the three main groups of visual events

are identified. The groups are visualized on the time axis (x-axis). The duration of
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Figure 4.1: Event hierarchical taxonomy

the visual event starts from a single frame up to the duration of an hour. Based on

this classification, the movements are visual events of duration lasting a multiple

of a second. Examples of such visual events are grab, kick, stand up, pull. Visual

events that require more than a second to identify them are classified as actions,

e.g. walk, talk, eat, write. Finally, the activities are visual events that last minutes up

to an hour, e.g. holding a meeting, cooking, sport activity. In the Figure 4.1, the dotted

Gaussian curves represents a distribution of each class, where the movements

are more concentrated around one second and the activities and actions have

overlapping definitions. In this thesis, the term event describes a visual event

that last from few seconds to few minutes and could be actions such as walking,

fighting, falling on the floor or drawing on the wall.

Descriptors for events can be roughly classified into pixel-based and object-

based. The pixel-based descriptors are defined by pixel-level primitives such as

color, texture or gradient of the color intensity. The primitives are extracted
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from each pixel or a pixel group and are also called interest points or interest

regions. The object based events can be distinguished by the meaningful grouping

of neighbouring pixels, sometimes called blobs, and are described by object-level

primitives such as size, shape, trajectory.

Pixel-based descriptors do not attempt to group pixel regions into blobs or ob-

jects, but compute features based on the salient pixels or regions of the input video

sequence. This abstraction approach usually does not allow for a straightforward

semantic interpretation, but has the benefit of being general and can be used to

describe any type of event. Two common implementations are available for event

representation using pixel-based abstraction. One approach is grid-based, and the

other is interest point or region detection based on their saliency. In the grid-based

method, each frame of the segment is divided into rectangular or cuboid cells of

equal size and the features are extracted from each cell and concatenated. Zhong

et al. (2004) represented each frame by a histogram, where each bin represents a

cell in the grid and the value of the bin represents the amount of motion in that

cell. The grid based approaches are sensitive to position and time shifts. The

grid also requires predefined temporal and spatial dimensions of the cuboid cells.

Therefore, the duration of the event and the dimensions of the objects acting in

the events cannot vary within action classes. One solution to make the method

invariant to location and time shift is to extract descriptors at multiple spatial

and temporal scales. However, with each additional scale, the dimensionality

of the descriptor increases and consequently the complexity of the classification.

On the other hand, local region based descriptors have been successfully used in

image processing for object detection. Lowe (2004) introduced a scale invariant

feature transform (SIFT) image description method that is robust to a range of

affine distortion, change in 3D viewpoint, addition of noise and change in illumi-

nation. This approach and its variations applied to image classification and object

recognition outperform many other descriptors (Mikolajczyk and Schmid, 2005).
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Object-based descriptors are based on the intuition that a description of the

objects participating in a video sequence is a good intermediate representation

for event reasoning. Thus, a low level input is abstracted into a set of objects and

their properties. These properties include information such as speed, position or

trajectory. Object detection and visual tracking are active research areas in the

computer vision community (Stauffer and Grimson, 1999; French, 2005; Han et al.,

2008). The object-based descriptors work well when describing events in well

defined visual scenes, where the motion of each object is spatially distinguishable

from each other. Foresti et al. (2002) proposed an event detection and indexing

system where human actions such as entering a restricted area, are represented

by tracked blobs and related features. Sillito and Fisher (2008) represented events

such as walking, falling down and fighting by motion trajectories of a moving

object. In their approach, the trajectories are approximated using uniform cubic

B-Spline curves in order to make the descriptions consistent in all the events.

Basharat et al. (2008) defined pedestrian motion paths as events and described

them by their motion trajectories and statistics such as location, size of an object

and speed. The drawback of the object-based descriptors is that they assume

a complete and at least sufficiently isolated moving object visible in the scene.

This assumption does not hold in many real-world surveillance applications. In

visual surveillance applications where diverse visual environments are captured,

object detection and tracking are often not possible due to the complexity of the

background, crowding, remote data capture or low quality of the video data. In

these situations, the shapes of the objects or their trajectories can be extracted

only with limited accuracy. Therefore, pixel-based descriptors are commonly the

preferred approach to represent unconstrained visual data and are preferred in

this work.

In the video domain, local spatio-temporal descriptors are proven to be a

useful representation of video events in unconstrained visual environments such
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as movie videos (Klaser et al., 2008; Kovashka and Grauman, 2010; Wang et al.,

2012; Marı́n-Jiménez et al., 2013). The properties of local descriptors such as

robustness to pose variations, occlusions and object variations suggest their suit-

ability to represent visual events in surveillance applications. Local descriptors

are extracted based on three main steps. Detection of local interest point or region,

description of the local region and aggregation of the descriptions of the local

regions to acquire a final representation of the event. The processing methods of

each step are discussed in the following sections.

4.2.1 Detection of Space-Time Local Regions

Surveillance videos are usually of lower quality due to the limitations of data

storage availability and network data transfer capacity. Thus, the objects acting

in the events and their shapes can be identified with limited accuracy. In the

unconstrained environment, where more than one object is moving in the captured

scene and it is difficult to accurately extract objects, spatio-temporal local regions

identified based on saliency in spacial and temporal dimensions have been proved

to be a stable representation. Figure 4.2 shows an example of the local spatio-

temporal points detected by evaluating cornerness and the change of the motion

direction. The interest points are showed using superimposed circles centered

around those points. The size of the circle represents a scale of the interest point.

Their capability to represent events is proved in recent applications such as a

single person action recognition (Laptev and Lindeberg, 2003; Klaser et al., 2008;

Bregonzio et al., 2009b; Kovashka and Grauman, 2010), activities of multiple

people (Chakraborty et al., 2012) and event classification in movies (Klaser et al.,

2008; Wang et al., 2012; Marı́n-Jiménez et al., 2013). Laptev and Lindeberg (2003)

introduced a method for detection of space-time local regions, and a detailed

analysis of the techniques can be found in the doctoral dissertation by Laptev
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Figure 4.2: Space-Time Local Regions (Laptev and Lindeberg, 2006)

(2004). The proposed method is an extension of the interest point detection scheme

from single images to video data based on the Harris corner detector (Harris

and Stephens, 1988) and is called the Harris3D interest point detector. To find

Harris3D interest points, space-time gradients L are acquired by the convolution

of Gaussian kernel Gx,σ2,τ2 , where σ is the spatial scale and τ is a temporal scale

of the video frame. The space-time Gaussian kernel is defined as:

Gx,σ2,τ2 =
1

2πσ4τ 2
e−

x2−y2

2σ2
− t2

2τ2 (4.1)

Interest points are set to the local maxima of the cornerness criterion H based on

the spatio-temporal second moment matrix M . The corner function H is defined

by detecting a spatial maxima of the Harris function H = det(M)− k · trace2(M).

Schuldt et al. (2004) successfully applied Harris3D interest point detection to iden-

tify single person activities. Kovashka and Grauman (2010) also used the Harris3D

interest point detection algorithm and tested different description schemes for the

interest points. Klaser et al. (2008) applied the Harris3D interest point detector to

represent single person activities and movie scenes. This approach can discrimi-
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nate amongst the behaviours that are characterized by the reversal of direction of

motion that gives rise to the spatio-temporal corners (Dollar et al., 2005). Example

behaviours could be walking, jogging, clapping or waving. In certain problem

domains where the motion of an object does not create spatio-temporal corners,

for example, facial expressions, or an object moving at a far distance from the

camera, interest points detected using this method are sparse and do not provide

sufficient information to discriminate between different actions.

An alternative interest point detector is proposed by Dollar et al. (2005) and is

based on the notion that too many features are better than too few. The interest

point detection method is called Gabor3D due to the utilization of the Gabor filters.

In this method, 2D Gaussian smoothing functions G are applied to the spatial

dimensions, and the two 1D Gabor filters Hev(t; τ, ω) = −cos(2πtω)e−t
2/τ2 and

Hod(t; τ, ω) = −sin(2πtω)e−t
2/τ2 are applied to the temporal dimension. The ω

and τ parameters correspond to spatial and temporal scale of the detector. The

response function has the formR = (I∗G∗Hev)2+(I∗G∗Hod)2. Dollar et al. (2005)

tested Gabor3D interest point detection method on event classification in facial

expression domain, mouse behaviour analysis and human activity identification.

Bregonzio et al. (2009b) applied the same detector as part of a single person

action recognition process with the resultant accuracies above 90%. The Gabor3D

interest point detection method extracts sufficient amount of interest points, but

the scales of the detectors have to be determined by the user and the features are

not scale-invariant.

Willems et al. (2008) proposes an efficient way to extract scale-invariant interest

points. In this work, a Hessian3D interest point detector is introduced which is a

spatio-temporal extension of the Hessian blob detector proposed by Lindeberg

(1998). The saliency of the gradients is given by the determinant of the 3D Hessian
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matrix of second derivatives:

Hx,σ2,τ2 =


Lxx Lxy Lxt

Lyx Lyy Lyt

Ltx Lty Ltt

 (4.2)

where Lxx is the convolution of the Gaussian second order derivative with the

frame I at point x. In comparison experiments conducted by Stöttinger et al.

(2011), the Hessian3D interest point detector outperformed the Gabor3D and Har-

ris3D detectors. It was shown to be superior in repeatability, variations of scale,

rotation and addition of noise tests.

To improve video event identification capabilities, Wang et al. (2009a) pro-

posed a densely sampled interest point detector (Dense). The proposed technique

samples interest points in 5 dimensions (x, y, t, σ, τ) where x and y are the spatial

coordinates, t is temporal coordinate, and σ and τ are the spatial and temporal

scales, respectively. The spatial and temporal samplings are done with a 50%

overlap providing an abundant amount of interest points. Wang et al. (2009a)

showed from the experimental results that Dense interest point detector outper-

forms Harris3D, Gabor3D and Hessian3D when human actions are considered in

realistic setups.

Inspired by the success of the Dense interest points detector and the efficiency

of the video event representation using motion trajectories, Wang et al. (2011)

introduced an interest point detection technique based on dense trajectories

(DenseTraj). In this approach, each point Pt is tracked independently in a number

of spatial scales by applying optical flow ω = (ut, vt) and the median filter kernel

M :

Pt+1 = (xt+1, yt+1) = (xt, yt) +M ∗ ω|x̄t,ȳt (4.3)
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where (x̄t, ȳt) is the rounded position of (xt, yt). The trajectory length L is limited

to avoid drifting from the initial locations. As soon as the trajectory reaches the

length L, it is removed from the tracking process. A new track is initialized if no

tracking points are found in a W ×W spatial neighbourhood. The descriptors

are computed within a space-time volume around the trajectories, rather than the

interest points as in the previously mentioned methods. The DenseTraj detector is

robust in the presence of fast, irregular motions that are caused by noise, and in

Wang et al. (2012) is shown to outperform the Dense methods.

4.2.2 Descriptors of Local Regions

To describe local regions around interest points extracted using the SIFT method,

Lowe (2004) proposed to sample image gradients and orientations around the

keypoint location and to create orientation histograms overM×M sample regions.

Example of this descriptor can be seen in Figure ?. The example shows the spatio-

temporal interest point (STIP) descriptors where each interest point is represent by

a vector, those vectors are then grouped to form a dictionary, and the classification

step is showed as a comparison with the dictionary. Each region is represented by

Figure 4.3: Descriptors of interest points (Marı́n-Jiménez et al., 2013)

a histogram of K gradient orientations, and the interest points are represented

by a feature vector constructed by concatenating the histograms of the regions
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D = (d1, ..., dM2K)T , where d is a histogram bin of gradient orientations. This

descriptor was powerful due to its invariance to shift (depending on the size

of M ). The scale and rotation invariance are achieved by adjusting the level

of Gaussian blur using the scale of the keypoint and adjusting the gradient

orientations relative to the keypoint orientation.

While the SIFT descriptor captures shape information, a method introduced

by Laptev and Lindeberg (2006) captures motion information. A Histogram

of Optical Flow (HOF) descriptor extracts points’ displacement by applying

motion analysis technique introduced by Lucas and Kanade (1981b). To get a final

descriptor, optical flow is computed from the second-moment matrices around

the space-time interest points. The area around an interest point is divided into

M ×M ×N cells, where M is a spatial and N is the temporal subdivision. Motion

vectors from each cell are represented as histogram entries of the corresponding

orientation. Representation of HOF for a region of interest is captured in a feature

vector D = (d1, ..., dM2NK)T , where K is the number of motion directions. In later

work, Laptev et al. (2008) conducted experiments to compare the HOF descriptor

with the histogram of oriented gradient (HOG) descriptor that captures spatial

information. The results showed that HOF descriptors produce better action

classification results.

The shape of a motion trajectory is a frequently used descriptor for event

recognition. Local motion patterns can also be represented by the shape of local

trajectories, and Wang et al. (2012) proposed such a descriptor. Given a point

Pt = (xt, yt) in frame It, its tracked position in the frame It+1 is smoothed by

applying a median filter and points of subsequent frames are concatenated to

form trajectories Pt, Pt+1, Pt+2, .... The length of the trajectories is limited to L

frames. The shape of the trajectory is defined by a sequence of displacement

vectors (δPt, ..., δPt+L−1) , where δPt = (Pt+1 − Pt). The final representation of the
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trajectory shape is the normalized displacement vector:

D =
(δPt, ..., δPt+L−1)∑t+L−1

j=t ||δPj||
(4.4)

The local trajectory has dimensionality of 2L, where L is the length of the trajec-

tory, and each point in the trajectory is represented by horizontal and vertical

displacements (x, y).

Based on the performance of SIFT descriptors for image classification and

object recognition and the importance of motion information to describe actions,

Klaser et al. (2008) introduced a HOG3D descriptor which in addition to shape

information captures some motion information. To computed HOG3D descriptor,

a local cuboid rs = {xr, yr, tr, wr, hr, lr}T , represented by its location in a 3D space

(xr, yr, tr) and size (wr, hr, lr), is divided into a set of M ×M × N cells, where

M represents spatial subdivision and N represents the temporal subdivision.

Consequently, each 3D cell is divided into S × S × S subblocks bj . For each

subblock bj , the corresponding mean gradient ḡbj is computed using integral

videos to achieve computational efficiency. The integral video on gradient vectors

is computed similarly to integral images reported by Viola and Jones (2001) where

each pixel value (x, y) is replaced with the sum of pixels above and to the left of

the location x, y. The mean gradient ḡbj is subsequently quantized and summed

over subblocks bj to form a histogram hc, and the histograms of all cells are

concatenated to form a HOG3D descriptor D = (d1, ..., dM2NK)T . Wang et al.

(2009a) applied this representation to describe activities in complex visual scenes

and is reported to outperform both 2D HOG and HOF descriptors, that capture

the gradient or motion information only.

Similarly to HOG3D which, in addition to spatial gradient information, cap-

tures motion information by introducing temporal gradient, the motion boundary

histogram (MBH) descriptor captures gradient information by taking a derivative
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of optical flow. This descriptor is originally introduced by Dalal et al. (2006) for

human detection and later adapted for interest point description by Wang et al.

(2012). By taking a gradient of optical flow, locally constant motion is removed

leaving only the motion boundaries, which makes it robust to camera motion

and can correctly describe the motion of the homogenous region. To represent

this descriptor as a feature vector, a local spatio-temporal region is divided into

M ×M ×N cells. The histograms of motion boundaries in each cell are concate-

nated into a single vector D = (d1, d2, ..., dM2NK)T . MBH for x and y directions are

calculated separately, thus two vectors Dx and Dy are extracted for a single region.

This descriptor is designed to capture relative motion of the moving objects while

resisting background motions. Wang et al. (2012) showed better action recognition

results using MBH descriptor when compared to HOF and HOG3D descriptors

on the Hollywood2 dataset (Laptev and Perez, 2007).

4.2.3 Postprocessing of Descriptors

A visual event, represented by a collection of the local regions requires further

processing to transform this collection of local region descriptors into a fixed

size vector. A fixed size vector is required to provide a meaningful comparison

between events for event modeling and detection. The process of mapping the

variable dimensional vectors onto the space of the fixed dimensionality is com-

monly known as vector quantization. The most widely used vector quantization

approach in action recognition is bag-of-visual-words (BOVW) (Schuldt et al.,

2004; Zhong et al., 2004; Klaser et al., 2008; Mahadevan et al., 2010). This method

is adapted from text retrieval where a document is represented by counts of its

words that match entries in the vocabulary. In the image or video representation,

the vocabulary is called a codebook and is populated with visual words sometimes

also called prototypes (Zhong et al., 2004). The BOVW representation is constructed
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in two steps. First, a codebook is created, followed by the mapping of the local

region descriptors to the visual words in the codebook. The final representation of

the event is formed by assigning each descriptor to the closest visual word in the

codebook and accumulating counts of each match in a histogram representation.

Each histogram bin represents a visual word in the codebook, and the value of the

bin shows the number of local regions that matched the visual word. For BOVW

representation, the codebook is usually created using square-error partitioning

methods, such as k-means (Duda et al., 2000). This algorithm proceeds by iterated

assignments of points to their closest cluster centers and re-computation of the

cluster centers. To handle large datasets, Mairal et al. (2009) proposed an online

approach that processes one element (or a small subset) of the training data at a

time.

Using this approach, each of the salient local regions found in a video segment

representing a single event is compared to each of the visual words in the code-

book using a distance measure, e.g. Euclidean. The shortest distance between the

descriptor and visual word is regarded as an occurrence of the visual word in the

event. All the occurrences of the visual words for a particular event are combined

into a histogram of nw bins. Each bin holds the count of occurrences of each word

for the event.

A histogram with nw bins is formed from the occurrences of visual words,

where the bins hold a count of all visual words that are present in the considered

event. The parameter nw has to be predefined in advance, and in the event

detection literature it is set to a value ranging from 1000 to 4000, depending on

the computational power available. Csurka et al. (2004) showed that using 1000

words is a good trade-off between accuracy and speed. Umakanthan et al. (2012)

showed that only 3 - 4 % improvement in action recognition performance can be

achieved when nw is more than 1000.
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4.3 Comparison of Local Region Descriptors

Comparison of event descriptors for action recognition has been carried out in a

number of papers (Wang et al., 2009a, 2012; Umakanthan et al., 2012). The descrip-

tors are compared for classification of activities performed by a single person, e.g.

KTH dataset, IXMAS, UIUC dataset; sports activities such as UCF sports, Olympic

sports; general activities such as YouTube vides, UCF50 or HMDB51 datasets; or

movies such as in the Hollywood2 dataset. Investigation of visual descriptors’

performance on surveillance videos, to our knowledge is not reported in the

literature. The dataset closest to the complexity of the surveillance applications is

the movie dataset (Laptev and Perez, 2007), where data is captured from various

camera angles and various distances from the actions of interest. This dataset

is used by Wang et al. (2011) to compare interest point detection methods. The

results showed DenseTraj to be superior when compared with the latest single

interest point detection methods from the literature.

Thus, in the experiments reported here, DenseTraj is used to find salient local

regions due to its superiority among other state-of-the-art methods. The trajecto-

ries are extracted on six spatio-temporal grids, and those detected on each grid

are treated independently. In order to find suitable descriptors for visual events

in surveillance data, a number of local-region descriptors are evaluated. The

descriptors and their anagrams are listed in Table 4.1. The HOG descriptors are

represented by combining gradient information with orientations of the gradients;

HOF descriptors are represented by a combining motion information with the

orientation of motion vectors; MBH descriptors are represented by combination

of motion information and have the non-boundary motion filtered out; TRACK

descriptors are represented by the normalized shape of the motion trajectory

of the interest points; ALL descriptors are a combination of HOG, HOF, MBH

and TRACK descriptors by concatenating their normalized representations; SIFT
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Anagram Full name Details
HOG Histogram of Oriented Gradi-

ents in 3D space
Captures gradient information;
Klaser et al. (2008)

HOF Histogram of Optical Flow Captures motion information;
Laptev and Lindeberg (2006)

MBH Motion Boundary Histogram Captures boundary motion infor-
mation; Dalal et al. (2006)

TRACK Trajectory Shape Captures the shape of motion of
the interest points; Wang et al.
(2012)

ALL Combination of all above Captures motion and gradient in-
formation

SIFT Scale Invariant Feature Trans-
form

Captures gradient spatial infor-
mation; Lowe (2004)

Table 4.1: A list of descriptors used in experiments

descriptors are represented by orientations of local gradients. All the descrip-

tors, except SIFT, are extracted from the regions around the dense trajectories

(DenseTraj). The SIFT descriptor uses a spatial interest point detection scheme

as proposed originally by Lowe (2004). The interest points of this descriptor are

spatial only. All the descriptors are quantized using bag-of-visual-words (BOVW),

where the number of words is set to 1000, which has been shown to be sufficient

(Csurka et al., 2004). A Support Vector Machine (SVM) with a radial basis function

kernel (RBF) is used to model and classify between two classes - “usual” and

“unusual”. The average of 6-fold cross-validation is reported as a final result.

4.3.1 Visual Surveillance Dataset

To find a good event representation for unusual event detection, the experiments

are performed on a benchmark dataset CAVIAR1. The dataset contains a number

of video clips with hand labeled object trajectories and metadata describing the

scenes at each frame. In the literature, this dataset has been used to test human
1Data from EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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activity recognition techniques. Fernández-Caballero et al. (2012) used this dataset

and the provided object trajectories to create a state machine which models object

behaviour in the scene. Based on the available ground-truth motion tracks of

the subjects, Lv et al. (2004) tested different approaches to detect specific human

activities. Kitani et al. (2005) used the dataset to test human activity recognition

when activities are modeled using Hierarchical Bayesian Networks. It is used in

the work reported here in order to ensure the results are reproducible.

The dataset is composed of video clips that resemble an indoor surveillance

environment. Each clip contains acted scenarios such as walking, browsing,

people meeting and fighting. The data is captured using a fixed camera sensor

and contains multiple instances of each scenario. In addition to the people that

are part of the scenarios, the clips contain people that belong to the background,

which makes the scenes more realistic. All the short clips are provided with

manually collected annotations describing various properties of the scenarios and

the locations of objects active in each frame. For the experiments, metadata of the

Appearances Movements Contexts Roles Situations
appear walking immobile walker moving
visible inactive walking browser browsing

disappear active browsing fighters inactive
occluded movement fighting fighter joining

running drop down walkers fighting
meeting meeters split up
leaving leaving object leaving victim

interacting
leaving object

Table 4.2: Properties from the CAVIAR video clips’ metadata

clips specifies five properties of the scenes: appearance, movement, context, role and

situation. Appearance, movement and role describe the objects visible in the scene.

The context and situation captures the global aspect of the scene. Table 4.2 lists five

properties together with the values that those properties can take.
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The metadata provided with the clips is adapted to represent “usual” and

“unusual” event classes. Based on the general description of unusual events in

visual surveillance scenarios, the “unusual” class is represented by the fighting

events. The dataset contains four video clips that have fighting scenes. The names

of the four clips are listed in Table 4.3, together with their length in seconds and

the duration of the scene depicting the fighting activity. As can be seen in the table,

Title N Ni Pi

Fight Chase 17 sec 5.32 sec 31.3%
Fight OneManDown 38 sec 7.8 sec 20.5%

Fight RunAway1 22 sec 8.24 sec 37.5%
Fight RunAway2 22 sec 7.84 sec 35.6%

Table 4.3: Video clips representing unusual activity; N - length in seconds; Ni -
duration of fighting activity; Pi - percentage of frames depicting fighting;

the fighting activity occupies approximately 30% of each video clip. It would

be inaccurate to take full video clips to represent the “unusual” class. Therefore,

instead of using full video clips, only the frames that belong to the actual fighting

events are set to belong to the “unusual” class. After a thorough examination of

the data and its annotations, the frames that are labeled to have objects or groups

in fighter or fighters role are chosen. The “usual” class is represented by all the rest

of the frames that have people walking, browsing or standing. Examples of the

frames depicting both classes are shown in Figure 4.4.

Figure 4.4: Example frames of the “unusual” (top row) and “usual” (bottom row)
classes

90



Six video clips from the dataset are used for the experiments. Four video clips

that captured fighting scenes (listed in Table 4.3), and two video clips (originally

named Browse1 and Browse2) that capture the usual scenarios such as walking

and browsing. The dataset has unbalanced data classes, where 17% of the data

belongs to “unusual” class, and all the rest of the data belongs to “usual” class.

When the data is divided into the training and testing sets, the constraint is added

to keep the original ratios between the classes in both training and testing datasets.

Half of the data is used for training, and the rest is used for testing. For cross-

validation of the results, the video clips are shuffled six times and the average

result is reported.

4.3.2 Results

In order to evaluate event descriptors, statistics of Receiver Operating Curves

(ROC) and precision-recall curves are evaluated. ROC curve shows the trade-offs

that can be made between the true positive rate (TPR) and the false positive rate

(FPR):

TPR =
TP

TP + FN
(4.5)

FPR =
FP

FP + TN
(4.6)

where TP is the number of frames correctly identified as part of unusual events,

FP is the number of usual frames incorrectly identified as part of unusual events,

and FN is the number of unusual event frames identified as usual. The area

under ROC (AUC-ROC) represents the overall performance of the algorithm

and provides a single measure that can be used to compare different methods.

Precision-recall curve shows the trade-offs between the fraction of detected frames

that belong to the unusual events (precision) and the fraction of unusual event
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frames detected as unusual (recall):

precision =
TP

TP + FP
(4.7)

recall =
TP

TP + FN
(4.8)

The area under precision-recall (AUC-precision-recall) is also used to compare

the accuracies of the algorithms via a single measure. The classification results

depicted via ROC statistics can be see in Figure 4.5. The precision-recall statistics

can be seen in Figure 4.6. To simulate the sequential nature of the visual surveil-

lance data, event detection and evaluation are conducted on a frame-by-frame

basis. The per-frame classification results, when different descriptors are used

Figure 4.5: Comparison of ROC curves of the unusual event detection results
when different interest point descriptors are used

(Table 4.1 lists the descriptors) can be seen in Figure 4.5. As can be seen from
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the graph, the SIFT interest point detector and descriptors show the lowest ac-

curacy of 59.7% AUC. It is different from the rest of the tested approaches as it

examines interest points in each frame independently without taking into account

any temporal information between the frames. A very similar descriptor to SIFT,

but with different interest point detection method is DENSE HOG. It shows a

13.2% improvement in accuracy when compared to the SIFT approach. When the

interest point detection method based on dense trajectories (DENSE) is used with

different descriptors, the lowest accuracy is 9% higher than that achieved using

the SIFT. It can be concluded that densely sampled trajectory regions of interest

represent events better than the regions of interest extracted around singleton

interest points. The overall false positive rates are high for all descriptors because

of the per-frame result representation. A single true event can have as many true

positives as number of frames it spans. The false positives are treated the same,

and a high false-positive rate is due to significantly more negative events in the

dataset that can become false-positives.

The lowest accuracy using DENSE interest point detection method is achieved

when the shape of the point trajectory (TRACK) is used. The lower event detection

accuracy is attributed to the fact that the trajectory shape information does not

carry any information about the gradients around the trajectories. The resulting

accuracy is improved by 7.3% when HOF descriptors are used. This descriptor is

based on motion information, but captures some spatial information by extracting

the optical flow orientations. The best performance is observed when DENSE

interest points are represented using MBH descriptors, yielding accuracy of 81.4%.

This descriptor captures similar information to the HOF descriptors. The improve-

ment is that it represents only the boundary motion by taking a derivative of

optical flow and filters out irrelevant motion.

To test if aggregation of different descriptors improves the overall accuracy

of the event detection system, the four descriptors representing DENSE inter-
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est points - TRACK, HOF, HOG and MBH - are combined using an early fusion

concatenation approach (represented by the DENSE ALL acronym). Vector quan-

tization is applied to the concatenated feature vector. The combined descriptor

showed a 2% accuracy reduction when compared to the best performing single

descriptor. The result implies that additional descriptors do not necessarily pro-

vide better accuracy and less accurate descriptors degrade the final accuracy of

the detection results.

In addition to the ROC curves, precision-recall curves are also evaluated

and depicted in figure 4.6. A precision-recall curves show the resulting ratios

Figure 4.6: Comparison of precision-recall curves of the unusual event detection
results when different interest point descriptors are used

of the “unusual” frames being correctly classified as “unusual” (recall), and the

fraction of frames classified as “unusual” that belong to the true “unusual” events.

The graph shows the same trends between different descriptors as in the ROC
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statistics (Figure 4.6). The SIFT descriptor gives the lowest AUC-PR (area under

the precision-recall curve), and the MBH descriptor gives the highest accuracy.

The accuracy using this metric is much lower for all the methods because all the

frames correctly classified as “usual” are not included in the statistics.

In the following experiments, the best performing local region descriptor is

used in segment evaluation. Temporal segmentation experiments are carried out

by fixing the step of the segment to a single frame, and increasing the number

of frames in the segment from 1 to 100. In figure 4.7 the ROC curves are plotted

when varying the size of the segment. It can be observed that the improvement

Figure 4.7: Comparison of results using different descriptors to classify fight no
fight event using SVM

of up to 6.4% can be achieved in event detection accuracy (represented by the

AUC-ROC). The highest accuracy is observed when 15 frames are combined into

a single segment, and then starts to drop with the increase of the segment size.
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This observation shows that a sufficient amount of information is observed in 15

frames of the action, and a higher number of the frames can smooth the event

features and reduces their discriminative properties.

4.4 Conclusions

Choosing suitable descriptors is an essential part of all event detection or recogni-

tion approaches. The quality of the results is highly dependent on the descriptors’

capability to differentiate between events. There is no general approach to deter-

mine the best descriptor for all tasks and the performance is highly dependant

on application. Visual surveillance applications usually have lower quality video

data due to limited storage resources and limited bandwidth. Methods that rely

on sharp edges of object shape boundaries may not provide sufficient informa-

tion to discriminate unusual events. To represent events in an unconstrained

environment, local space-time interest points are investigated. In the literature,

local regions of interest have been successfully used to represent events in movie

datasets. Even though movie videos are usually of high quality, the complexity of

the scenes and the amount of clutter and motion present in the videos suggest that

the local space-time interest point based representation of the events is suitable

for surveillance video data.

A number of descriptors representing regions of interest were proposed in the

literature. The aim of the experiments conducted in this chapter is to find suitable

descriptors for events in an unusual event detection application. The results

show that the descriptors based on motion and gradient information provide

superior performance to the descriptors that use only motion or only gradient

information. The experimental results show that the motion boundary histogram

(MBH) descriptors of the dense trajectory (DENSE) interest points perform better

than other descriptors evaluated. The analysis of the results also concluded that
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it is useful to aggregate information from consecutive frames to represent them

using segments. It was found that by aggregating consecutive frame into a single

segment produces a better classification accuracy (15 frames in these experiments).

The experimental results and the review of the literature show that the events

in visual surveillance data can be better represented using the following compo-

nents:

1. Dense trajectory interest point detector;

2. Motion Boundary Histogram descriptor for each local region;

3. Bag of visual words vector quantization;

4. Event representation using overlapping segments (15 frames length and 1

frame shift in these experiments).

4.5 Summary

This chapter outlined the experiments performed on visual event descriptors

computed on local spatio-temporal regions. First, the literature has been reviewed,

following by the experiments on various local region description methods to

find a suitable representation for events in surveillance applications. The best

performance was achieved with MBH descriptor that is calculated from the

local regions around the dense spatiotemporal trajectories. In addition to the

evaluation of the descriptors, experiments were also carried out to evaluate the

influence of different segment sizes on the ability to classify the results. The results

show that MBH representation aggregated to segments of 15 frames achieved

better performance than the other tested segmentations. The suggested event

representation is applied in the following chapter to investigate the classification

techniques.
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Chapter 5

Comparison of modeling and

classification techniques

5.1 Overview

To make event detection algorithms applicable to real-world applications, the

algorithms must conform to the constraints that are usually not considered when

developing algorithms in a laboratory setting. Three main features of real-world

scenarios that introduce these constraints are the unavailability of annotations

for training data, huge volumes of continuous video data, and processing data

over long periods of time. The first feature is addressed using unsupervised

algorithms to learn the model of the events. The second feature is addressed

when incremental learning techniques are used. The third feature is addressed

by substituting static parameters with dynamic ones. To evaluate methods that

take these constraints into account, a comparison of classification capability is

first made between an unsupervised method and a state-of-the-art supervised

classification method. Then, two types of unsupervised classification approaches

are investigated. One is trained using batch processing, and the other method

is trained using an incremental approach. In addition to the comparison of
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classification approaches, investigation of automatic thresholding techniques, a

key aspect of the proposed unsupervised approach, is also carried out.

5.2 Motivation

Researchers have designed a variety of models and methods to recognize human

activity and interactions, vehicle travel activity or environmental changes. Ma-

chine learning techniques used for modeling and identifying these various events

can be divided into supervised and unsupervised approaches, based on how the

algorithms are trained.

Supervised approaches are designed to model and identify activities that are

known in advance, and require a sufficient number of examples of each activity

to train the model. Foresti et al. (2002) trained a neural tree (NT) algorithm with

the motion trajectories that were manually drawn on the camera-view for later

recognition. The NT model representation is hierarchical, where each node in

the modeled decision tree is either associated with one of the neurons, or is a

branch terminator associated with one region of the input space. The classifica-

tion accuracy is shown to decrease with an increasing number of people in the

scene due to the difficulties of tracking them. To classify between activities in

ballet, tennis and football games, Efros et al. (2003) modeled representations of

predefined activities using a k-nearest neighbour (k-NN) classifier. k-NN does not

create a model of each activity. It assigns a class label to a new instance based on

the labels of the nearest instances in the training set. Danafar and Gheissari (2007)

modeled and identified single person activities such as walking, running, waving,

etc., using a Support Vector Machine (SVM) classification algorithm. SVM is a

two-class classifier which finds the hyperplane that separates training samples in

the feature space with the largest margin possible. Multiple binary classifiers have

to be trained to apply this method in order to the multi-class problem. Bregonzio
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et al. (2009b) performed recognition of single person activities using both k-NN

and SVM classifiers. Both approaches showed similar accuracies, which indicates

that the data is well separated and does not require complex modeling. Dollar

et al. (2005) applied 1-NN with χ2 distance and SVM classification approaches to

classify single person activities such as wave, run, walk, etc., as well as more di-

verse recognition tasks such as facial expression recognition and mouse behaviour

recognition. The resulting accuracy varied based on the ambiguity of the event.

For example, facial expression such as fear was identified with an accuracy of

64%, while a surprised face expression was identified with 100% accuracy. Wang

et al. (2012) applied SVM classification with an RBF-χ2 kernel to classify human

activities in uncomplicated single person activities, and the actions in more com-

plex environments such as YouTube sports videos and movies. The accuracies of

the results ranged from 94.2% for activity identification in uncomplicated scenes,

to 46.6% for recognition of events in highly cluttered and diverse scenes such as

the ones in the movies. Fernández-Caballero et al. (2012) proposed to use finite

state machines to model human activity based on the known objects in the scenes

and the entrance and exit locations. This approach requires knowledge about the

layout of the captured territory which is not available in most surveillance setups.

Gao and Sun (2013) used hierarchical Dirichlet process hidden Markov model

(HDP-HMM) to learn predefined activities such as leaving, passing, wandering,

etc., represented by subjects’ motion trajectories. The sequence of motion labels

are modeled as Markov chains, and a Dirichlet process is applied to avoid the

rapid-switching problem between states. Accuracies above 94% are reported for

activities such as leaving, browsing, walking, etc.

It can be concluded, that if the events are visually distinguishable, such as a

single person in an empty scene performing walking, waving or boxing activities

(Efros et al., 2003; Danafar and Gheissari, 2007; Bregonzio et al., 2009b), the

accuracies of the results are close to 95% for most of the supervised classification
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approaches. On the other hand, when less defined activities are to be identified,

the accuracies drop to 65%, for example, when mouse drinking is an event of

interest (Dollar et al., 2005), or to 58% when actions in movies such as answering

the phone, hugging or kissing are of interest (Wang et al., 2012).

Unsupervised techniques are applied when labels of the training data are not

available. Ben-David and Lindenbaum (1997) introduces a concept of learning

without a teacher which is an alternative name for unsupervised learning. Rather

than attempting to infer an approximation to the unknown distribution, they pro-

pose to settle for the task of learning its high-probability-density areas. Blank et al.

(2005) applied spectral clustering to distinguish between activities represented by

space-time silhouettes. Events such as walking, running, waving, etc., are clustered

into nine groups without providing labels of the actions. Unsupervised learning

algorithms are frequently applied for unusual event detection. In these scenarios,

the data are mostly dominated by usual events, while the unusual events rarely

appear. This constraint allows application of one-class modeling algorithms to

model the usual activity class as long as the modeling techniques are able to create

a multi-modal representation of the data. Andrade et al. (2006) applied a spectral

clustering algorithm to identify a number of distinct motion classes that represent

different crowd activities. After the grouping, a model is trained via iterative

process using separate multi-observation hidden Markov model (MOHMM) for

each class. Deviations from the model are defined as abnormal activities. A one-

class learning approach is also applied by Basharat et al. (2008) to learn the normal

activities represented by motion trajectories. In this work, a Gaussian mixture

model (GMM) is used to create a usual model of pedestrian and vehicle paths

and the instances that have low probabilities to be generated by the learnt model

are declared as abnormal. Learning a single class model with a One-class SVM is

applied by Sudo et al. (2008) to identify unusual video events, and by Lecomte

et al. (2011) to identify unusual audio events.
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Based on how the data is presented to the training algorithm, the machine

learning techniques for modeling events can be further classified into batch and

online approaches.

If the learning is performed in a batch mode, event detection takes place only

after the model is built. Andrade et al. (2006) applied a multi-observation hidden

Markov model (MOHMM) to iteratively learn a predefined number of normal

sequences that are represented by motion trajectories. The classes of normal

trajectories are identified using an EM-based Gaussian mixture model (GMM).

The trajectories with low probabilities of being part of the learned models are

interpreted as representative of atypical events.

To learn the model gradually with the opportunity to perform event detection

after each learning step, an online or incremental learning version of the algorithm

is introduced. Online modeling is frequently used to maintain object appearance

during tracking. Han et al. (2008) applied a GMM algorithm to model object

appearance, and implemented an online learning procedure to update the ap-

pearance of the object while tracking it. In unusual event detection applications,

online modeling is also frequently used. Breitenstein et al. (2009) applied on-

line agglomerative clustering algorithm, initially introduced by Guedalia et al.

(1999), for unusual scene detection in time-square web-cam images. The model is

updated with each new data instance, and the closest clusters in the model are

merged forming a hierarchical representation of the sequential data. A number of

events such as rain, smoke or building tents in the square are successfully detected

as “unusual” using this approach. Feng et al. (2012) applied online agglomerative

clustering (AGG), similarly to (Breitenstein et al., 2009), but introduced a two layer

clustering procedure, where cluster centers resulting from the clustering proce-

dure are further grouped introducing a second level clustering. The experimental

results show above 90% detection rate of predefined unusual events.
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Combination of online and batch processing is applied by Kim and Grauman

(2009), where model training is performed using MPPCA, which utilizes the

Expectation Maximization (EM) algorithm to learn parameters. The frequency

and co-occurrence histograms of Mixture of Probabilistic Principal Component

Analyzers (MPPCA) describe typical local activities and their interactions, and

are used to establish the Markov Random Field (MRF) model. After the training

is done, abnormality levels are inferred while incrementally updating the MRF

model.

The last step in event detection is decision making. As the output from the

classifier is not a binary value, a decision has to be made what probabilities

or distances are used to declare an event unusual. Feng et al. (2012) applied

two thresholds for anomaly identification: one is a prespecified threshold for a

distance from the model, and the second threshold is the intra-cluster distance for

the matching cluster. An anomaly is declared if the distance from the new element

exceeds the maximum intra-cluster distance. Andrade et al. (2006) defined events

abnormal if their probabilities are smaller than the minimum likelihood value

present in the usual class training set. Similarly, Breitenstein et al. (2009) set the

threshold to be the highest value for the shortest distances to the model.

The first constraint of real-world scenarios is that labels for the training data are

not readily available to train the classifiers, in particular for unusual events that

are very rare. To our knowledge there is no research done on activity recognition

when training and testing are performed with videos from different domains

targeting surveillance applications. In real-world applications, it is challenging to

get annotations for each camera separately. Therefore, an unsupervised learning

approach is more suitable than the supervised learning approach. The second

constraint is that huge volumes of continuous video data have to be processed on

the fly. Batch mode approaches learn the model during the training phase, and

the model stays static afterwards. If the batch model is to be retrained to integrate
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new data, its computational complexity would gradually increase restricting its

usage to finite duration video streams. In real-world scenarios, an online learning

approach is the preferred choice to the batch learning. The third constraint is

introduced to the real-world scenarios when the parameters defined at the start

may become obsolete after running the algorithm for the extended period of time.

One of the parameters of event detection systems is a classification threshold. To

take into account this constraint, a classification threshold from the data at each

processing step could be extracted to allow the value to adapt over time.

The goal of this chapter is to propose an unusual event detection approach

that conforms to the three real-world application requirements defined here. The

experiments are performed by gradually updating algorithms to integrate all three

criteria. This experimental approach facilitates an investigation of the trade-offs

of conforming to each criteria independently.

5.3 Dataset

Definition of unusual events is challenging due to a wide variety of events that

can be characterized as unusual and due to their dependence on the context

of the monitored environment. In Chapter 4, the adaptation of the CAVIAR

dataset1 annotations was introduced to accommodate unusual event detection

experiments. To evaluate the event classification methods, the same dataset with

adapted annotations is used. The difference in these experiments is that the usual

event class is represented by six types of events captured in 20 video clips listed

in Table 6.1. Table 5.2 lists the unusual events used in the experiments. There

are significantly more instances belonging to the usual class than instances of

the unusual class events. The imbalance is deliberate so that the dataset would
1Data from EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

104



Clip ID Title of The Video Clip Duration
1 Browse WhileWaiting1 31.1s
2 Browse WhileWaiting2 1min 15.2s
3 Browse1 41.8s
4 Browse2 35s
5 Browse3 54.6s
6 Browse4 45s
7 LeftBag AtChair 21.5s
8 LeftBag 57s
9 LeftBag PickedUp 53.6s

10 LeftBox 34s
11 Meet Crowd 19.1s
12 Meet Split 3rdGuy 36.4s
13 Meet WalkSplit 24.4s
14 Meet WalkTogether1 27.7s
15 Meet WalkTogether2 32.5s
16 Rest FallOnFloor 39.7s
17 Rest InChair 39.7s
18 Rest SlumpOnFloor 35.9s
19 Walk2 41.6s
20 Walk3 54.6s

Table 5.1: List of events used for training

Title of The Video Clip N Ni Pi

Fight Chase 17 sec 5.32 sec 31.3%
Fight OneManDown 38 sec 7.8 sec 20.5%

Fight RunAway1 22 sec 8.24 sec 37.5%
Fight RunAway2 22 sec 7.84 sec 35.6%

Table 5.2: Video clips representing unusual activity; N - length in seconds; Ni -
duration of fighting activity; Pi - percentage of frames depicting fighting;

resemble real-world scenarios where unusual events rarely happen. Table 5.3

shows the summary of the training data used to train the classifiers. Usual events

together make up of data, or 4292 segments (11 minutes 30 seconds), and unusual

events make up 2% of the dataset or 88 segments (14 seconds). Approximately

2% of the training data belongs to the unusual class, and 98% belongs to the usual
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Usual(All the events) Unusual(Fighting)
Duration 11min 30s 14s
#Segments 17250 350
Percentage 98% 2%

Table 5.3: Proportions of training data-set

class - similar proportions as would be expected in real-world scenarios. This

value can be identified by an experienced security personnel.

The same training data is used to train supervised and unsupervised classifiers

to ensure a fair comparison between the methods. The difference between the

supervised and unsupervised training is that the supervised training algorithm is

provided with the data together with corresponding class labels. Training data

for the unsupervised method contained both usual and unusual events without

giving labels to them. The training data deliberately contains outliers to represent

real surveillance training data.

5.4 Supervised versus unsupervised training

One of the constraints of real-world scenarios is that labels for the training data

are not readily available to train the classifiers, especially for unusual events

that are very rare. Unsupervised learning techniques take advantage of the

surveillance data property that most of the captured data belongs to the usual

class. Using unlabeled data and the assumption that the data is dominated by

the usual scenes, unsupervised classification techniques learn the model of usual

classes from as much training data as possible and treat the examples that are

significantly different from the created model as unusual. Two state-of-the-art

algorithms, supervised and unsupervised, are investigated in order to compare

their ability to identify unusual events. Support Vector Machine (SVM) is a

supervised classification algorithm that is widely used in the event classification
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literature (Laptev et al., 2008; Bregonzio et al., 2009a; Wang et al., 2011). If we

consider a training dataset T consisting of N pairs (xi, yi), where xi ∈ Rd is the

input data (i = 1, ..., N ) and yi ∈ 1, ..., K is the output class label. In unusual event

detection task K = 2. The SVM classifier is defined by

k = argmax
j=1...K

fj(xi) xi ∈ Ck; (5.1)

each decision function fi is expressed as

fj(xi) = wTj θ(xi) + bj (5.2)

where function θ(xi) is a kernel function which maps the original data xi to

a higher-dimensional space in order to separate classes that are not linearly

separable. The margin between classes i and j is defined by the relationship

2/||wi − wj||. The minimization function is defined as follows:

min
w,bi

1

2

K∑
i=1

K∑
j=i+1

||wi − wj||2 +
1

2

K∑
i=1

||wi||2 + C
K∑
i=1

K∑
j=i+1

∑
xi∈Cij

ξijl (5.3)

Here 1
2

∑K
i=1 ||wi||2 is a regularization term, and

∑K
i=1

∑K
j=i+1

∑
xi∈Cij ξ

ij
l is a loss

function used to find the decision rule with the minimal number of errors in the

inseparable case.

SVM is an effective algorithm for classification of the data represented by

high dimensional vectors. Once the training is finished, the process is memory

efficient. It is well suited for unusual event detection task as it can learn from only

a few examples, and examples of the unusual events are generally sparse. The

drawback is that it requires at least one example of an unusual event to be able

to make a prediction. Experimental results when the supervised classification
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method is applied to detect unusual events are expected to provide a benchmark

accuracy for the unsupervised method.

Gaussian mixture models (GMM) are widely used in data mining, pattern

recognition, machine learning and statistical analysis. A GMM is applied to model

events consisting of multiple modalities and can be used as a one-class classifier

to model the usual class (Porikli and Haga, 2004; Valera and Velastin, 2005; Sillito

and Fisher, 2008; Basharat et al., 2008). In many applications, the parameters of

GMM are determined by maximum likelihood, typically using the expectation

maximization (EM) algorithm (Bishop, 2006). A GMM is expressed in the form:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (5.4)

Each Gaussian density N (x|µk,Σk) is called a component of the mixture and has

its own mean µk and covariance Σk parameters. The parameters πk are called

mixing coefficients. One way to estimate π, µ and Σ parameters is to use maximum

likelihood. The log-likelihood function is given by

lnp(X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(5.5)

where X = x1, ..., xN is a collection of the data samples. EM for GMM proceeds as

follows: First, initial values for means, covariances and mixing coefficients are cho-

sen. Then two steps are alternated called expectation step (E) and maximization

step (M):

• In step (E), the current values of the parameters are used to evaluate the

posterior probabilities:

γ(znk) =
πkN (xn|µkΣk)∑
j πjN (xn|µj,Σj)

(5.6)
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• In step (M), the calculated probabilities are used in this step to re-estimate the

means, covariances, and mixing coefficients using the following functions:

µk = 1
Nk

∑N
n=1 γ(znk)xn

Σk = 1
Nk

∑N
n=1 γ(znk)(xn − µk)(xn − µk)T

πk = Nk
N

(5.7)

where

Nk =
N∑
n=1

γ(znk) (5.8)

Finally, the log-likelihood is evaluated using Equation 5.5. The next step is to check

for convergence of either parameters or the log likelihood. If the convergence

criterion is not satisfied, return to step (E).

5.4.1 Experimental setup

In the comparison experiments between the supervised and unsupervised clas-

sification approaches, the SVM is chosen to represent the supervised methods

and the GMM is chosen to represent the unsupervised methods. A Radial Basis

Function (RBF) is chosen as a kernel for the SVM method due to its ability to

generalize data well and its ability to deal with noise. Parameters C and γ are set

to 1 and 1/d respectively, where d is the number of features. The GMM classifier

is set to have 100 mixtures. As long as the number of mixtures is reasonably big,

the inherent clusters of the sample space could be covered with some redundancy

without significantly affecting the model. Both the SVM and GMM methods are

implemented in batch mode.

Representation of the usual and unusual events is designed based on the

results of Chapter 4. First, the video data is segmented into temporal segments of

a predefined size. The segments are extracted using the windowing technique

with the window 0.6 seconds long and 0.04 second shift. Evaluation of the results
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is conducted on a per frame basis rather than per segment to avoid ambiguous

representation of the overlapping segments. Each segment is represented by the

occurrences of the spatio-temporal regions in the codebook consisting of 1000

instances. Spatio-temporal regions of the segments are represented by the motion

boundary histogram (MBH), and the MBH is extracted from multiple scale regions

around the trajectories of local points (for more details about the descriptors see

Chapter 4).

Segregation of data into training and testing datasets is depicted in Figure

5.1. Both supervised and unsupervised models are trained using 80% of usual

data (10 000 segments). The rest of the data is used for testing (2 500 segments).

10-fold cross-validation is performed by randomly selecting training and testing

Figure 5.1: Selection of training and testing data for experiments

data from the dataset. The average of the cross-validation results is evaluated and

discussed. Results from the state-of-the-art supervised method are expected to

provide the benchmark accuracy for the unsupervised method.
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5.4.2 Evaluation

To compare the classification results of supervised and unsupervised methods,

a number of different evaluation metrics are used (Figures from 5.2a to 5.2c).

Different metrics help to uncover different aspects of the results. The ROC curves

in Figure 5.2a show similar trends of trade-off between true/false detections

rates for both SVM and GMM classification approaches, with the supervised

learning approach (SVM) performing better by 8% in terms of the AUC-ROC

measure. Higher accuracies are expected from the supervised method due to the

annotations provided together with the training data. The unsupervised (GMM)

method is not provided with any knowledge about unusual events to be detected.

The precision-recall curves in Figure 5.2b show the trade-offs between the

precision and recall of instances belonging to the unusual class. It can be observed

that the precision of the unsupervised classification results (GMM) reaches a

maximum of 0.4. The temporal probability plot reveals why the precision is

low. In Figure 5.2c it can be seen that the unsupervised approach assigned high

probabilities of being unusual for the frames captured immediately before the

fighting event (the area near frame 1000). Visual investigation of the data revealed

that the high probability frames represent the activity right before the fight starts

where two persons are approaching each other at an increased pace (the snapshots

of the scenes can be seen in Figure 5.18 in the section on qualitative evaluation).

This is a good example of how the annotation decision affects the results. If the

beginning of the fighting event had been marked at the point when the fighters

noticed each other, the unsupervised method would have correctly detected the

pre-fighting actions as highly probable of being unusual.

Binary classification results can be seen in Figure 5.3. To acquire the binary

results, the threshold for the results for each method individually is identified by
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(a) (b)

(c)

Figure 5.2: Comparison of supervised (SVM) with unsupervised (GMM) learning
approaches using different metrics: a) ROC curves b) Precision-Recall curves c)
temporal unusual event probabilities

maximizing the F1 score:

arg max
th

F1(P > th) (5.9)
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(a) (b)

Figure 5.3: Unusual event detection results thresholded using the optimal F1 score
for each classification method independently: a) supervised learning (SVM) b)
unsupervised learning (GMM)

where P are the resulting probabilities and th is the threshold. The F1 score is

calculated as follows:

F1 =
2TP

2TP + FP + FN
(5.10)

where TP is the number of frames correctly identified as part of unusual events,

FP is the number of usual frames incorrectly identified as part of unusual events,

and FN is the number of unusual event frames identified as usual. It is inter-

esting to note that when comparing thresholded results of both methods the

scenes causing a decrease in precision for the unsupervised GMM classification

method are detected as unusual by both unsupervised GMM and supervised

SVM classification methods. The only difference is that both methods detected

those scenes as unusual with different probabilities. The GMM approach assigned

much higher probabilities than the SVM method causing the disparity between

the precision-recall curves (Figure 5.2b). When considering the binary results

of both methods, it can be seen that the unusual events were detected by both

methods equally well, but unsupervised GMM classification results show more

false detections compared to the supervised SVM approach. Tables 5.4 and 5.5
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show the breakdown of the thresholded quantitative results for the SVM and the

GMM approaches respectively. Precision, recall and the F1-scores are recorded in

the table for usual and unusual class separately.

Class precision recall f1-score
0 0.94 0.84 0.89
1 0.46 0.72 0.56

avg 0.86 0.82 0.83

Table 5.4: Unsupervised (SVM) classification using optimal F1-score threshold; 0 -
usual class; 1 - unusual class

Class Precision Recall F1-score
0 0.94 0.72 0.82
1 0.34 0.74 0.46

avg 0.84 0.73 0.76

Table 5.5: Supervised (GMM) classification using optimal F1-score threshold; 0 -
usual class; 1 - unusual class

Precision for the usual class (indicated by number 0 in the first column of the

tables) is equal for both SVM and GMM approaches. A 0.94 precision value for

the usual class means than only 6% of the items marked as usual are incorrect. Due

to the imbalance of the testing dataset and due to the properties of the application,

the precision of the unusual class is more important than that of the usual class.

From the precision rates of the unusual class (indicated by number 1), it could be

said that using both methods more than 50% of the detected instances were not

part of the unusual events in the ground-truth annotations. This may appear to be

an unsatisfactory result, but if the recall of the unusual class is considered, which

is above 70% using both methods, it can be seen that a significant portion of the

overall unusual instances has been detected.

Figure 5.4 shows the recall from the two fighting events in the test dataset.

The bars show detection results of the ground-truth fighting events where the

resulting probabilities are theresholded using the threshold obtained from the
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Figure 5.4: Recall of the fighting events

maximum F1-metric (Equation 5.9). It shows results from the event detection

point of view where events of interest are either detected or not, and how well

each event is detected. It can be concluded that the results are positive as more

than 50% of both ground-truth fighting events are correctly identified as unusual,

and the first fighting event is almost fully detected by both methods. The Figure

also shows that the unsupervised approach has better recall of unusual events

(which can also be seen in Tables 5.4 and 5.5) which is at the expense of the higher

rate of the false detections. The amount of the false positives (FP) detected using

the GMM method was found to be 543 segments or 27% of all negative segments.

Using the SVM method 322 segments were falsely detected as unusual, which

is 16% of overall negative segments. When temporarily grouped, the segments

formed 5 FP events for GMM method and 2 FP events for SVM method. The

qualitative evaluation of those events is further analyzed in Section 5.8.
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5.5 Incremental vs batch learning

In the previous section, the unsupervised event detection approach was compared

to the supervised event detection approach, and the results showed comparable

accuracy when only events of interest, namely fighting events, were evaluated.

The results showed that more than 50% of each fighting event were found to be

unusual by both methods. In further experiments, an online learning version of

the unsupervised event detection approach is investigated and compared to the

batch based GMM unsupervised classification approach.

There are three features of the online learning approach that make it suitable

to real-world scenarios. First, the batch processing based approaches have an

increasing complexity as more data is used for training and are not scalable

for training with the very large amounts of data, which is typically the case in

surveillance applications. On the other hand, the online learning algorithm has

the same complexity with any amount of data. It trains the model one sample at

a time, and after adapting the model with the data sample it throws the sample

away.

The second benefit of applying an online learning approach rather than the

batch approach is the ability to make predictions from a very early stage of the

training phase. Even if early predictions are less accurate and give more false

alarms, it may be more acceptable in real-world applications than not getting any

results for a period of time while training is taking place.

The third benefit of online learning is its ability to learn continuously and

indefinitely. It is not the case with a static model that may become obsolete after

some time. The online approach keeps incorporating new data into the model

making it more relevant to the current state of the environment as time passes.

Taking all this into account and extending the baseline approach introduced

in Chapter 3, an agglomerative on-line algorithm (AGG) is implemented so
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that, similarly to the GMM batch processing algorithm, it gathers the statistical

information about the data in a number of clusters.

An online approach is implemented based on the agglomerative clustering

algorithm (AGG) introduced in Chapter 3. The algorithm is based on the clus-

tering algorithm for non-stationary data proposed by Guedalia et al. (1999). The

algorithm is adapted for the targeted environment, therefore the weighting met-

rics and the cluster fusion approach is modified. A summary of the algorithm is

provided next. In this approach, each cluster k ∈ 1, 2, ..., K is composed of three

attributes: cluster centroid µk, element count nk and age ak. A model is initialized

by collecting samples from successive data points until the maximum size K is

reached. To unify the representation, every new sample x is created as a cluster

k + 1 with µk+1 = x, nk+1 = 1 and ak+1 = 1. When a new sample comes, it is

directly added to the model. Then, the most similar pair of clusters (i, j) is found

by comparing the distance between the µ value of every two clusters within the

model. Cluster with the smaller weight w (lets assume its j) is merged into the

other (i). After the merging procedure, the weaker cluster (j) is removed from the

model to ensure that the model does not increase the size with the time.

The same experimental setup is kept as in the previous experiments. Both

GMM and AGG are composed of 100 components, and AGG is implemented with

the Euclidean distance.

5.5.1 Evaluation

The results of both classification methods can be compared by evaluating the

probabilities of the data being usual or unusual, or by evaluating the binary

results.

Receiver Operating Characteristic curves evaluation is based on probabilities

and it evaluates the relationship between True Positive Rates (TPR) and the False
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Positive Rates (FPR). Here, TPR represents segments of correctly detected unusual

events, and the FPR represents segments of usual events that were incorrectly

detected as unusual. The relationship between TPR and FPR is always positively

correlated, meaning that when the TPR is rising, the FPR also goes up. It is

desirable to achieve high TPR rates at the same time as the low FPR. In the

Figure 5.5a, it can be observed, that if 100% TPR is required, 70% of the detected

segments would belong to usual events. Even though the numbers are high,

the segments might be temporarily close to unusual events. Temporarily close

segments can also be grouped and collectively discarded therefore reducing the

final effort of identifying truly interesting events. If more than 50% of the unusual

event segments are required to be detected, the GMM approach provides better

TPR to FPR ratios by 10-20 %. The same trends can be seen in Precision-Recall

Curves (PRC) depicted in figure 5.5b. To achieve a recall higher than 50 %, the

GMM approach provides higher precision. On the other hand, if it is sufficient

to have a recall below 50%, the AGG approach provides high precision values.

The results can be clarified by plotting the probabilities on the time axis as can be

seen in Figure 5.5c. In the Figure, the x-axis represents the temporarily ordered

segments. The y-axis represents the actual probabilities and the dashed lines mark

the unusual events happening. It can be observed, that the with the Incremental

learning approach (AGG) probabilities above 50% would give negligible amount

of false positive segments (FP), therefore yeilding very high precision values. On

the other hand, if the threshold would be chosen below 40%, then the number of

FP segments is significantly increased. For the batch processing approach (GMM),

the threshold at 40% would give high FP rate and low true positive (TP). Thus,

when the threshold is 0.05, the TP rate is as high as with AGG method, but the FP

rate is significantly smaller.

The results show, that the threshold selection significantly affect the classifi-

cation results. As before, the threshold yielding the highest F1-metric (Equation
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(a) (b)

(c)

Figure 5.5: Comparison of incremental (AGG) and batch (GMM) approaches
using different metrics: a) ROC curves b) Precision-Recall curves c) Temporal
unusual event probabilities

5.9) is used to obtain the binary results. Binary classification results can be seen in

Figure 5.6. The second fighting event was missed by the online approach (Figure

5.6a) but was partially detected by the GMM approach (Figure 5.6b). Nevertheless,
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by comparing the two Figures it can be noticed that the batch approach (GMM)

produced significantly more false detections than the online approach (AGG). The

(a) (b)

Figure 5.6: Unusual event detection results thresholded using the optimal F1 score
for each classification method independently: a) incremental learning (AGG) b)
batch learning (GMM)

Class precision recall f1-score
0 0.90 0.92 0.91
1 0.53 0.47 0.50

avg 0.84 0.85 0.85

Table 5.6: Online classification (AGG) results threholded with optimal F1-score; 0
- usual class; 1 - unusual class

Class precision recall f1-score
0 0.94 0.72 0.82
1 0.34 0.74 0.46

avg 0.84 0.73 0.76

Table 5.7: Batch classification (GMM) results thresholded with optimal F1-score
threshold; 0 - usual class; 1 - unusual class

findings are supported by the breakdown of the results in Table 5.6 and Table 5.7,

where the detection precision of the frames belonging to the usual class (indicated

by the first column of the class 0) is lower for the incremental learning approach.

It indicates that the online approach missed a higher amount of segments of the

unusual events. The higher precision of the unusual class shows (indicated by the
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first column of the class 1) that a smaller amount of false events is detected by the

online approach when compared to the batch learning method.

When looking only at the recall of the ground truth unusual events (Figure

5.7) it can be seen that although the first event is almost fully detected by the

online agglomerative algorithm, the second fighting event is missed. The GMM

approach marked more than half of the segments belonging to this event as

unusual. The F1 score treats the detection rate of true events and the precision of

Figure 5.7: Recall of the fighting events

the results equally, thus, it adds more weight to the recall of the results. This yields

more true events to be marked as unusual and reduces the precision as shown in

the precision-recall curves (Figure 5.5b). Due to the F1-score requirements of the

ground-truth annotations, the search for a better threshold is investigated in the

next section.
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5.6 Dynamic threshold

In order to acquire binary classification results in a continuous environment,

constraints such as the lack of annotations and extended run-time of the system

need to be considered. Whilst the F1-measure could be used to optimize the

threshold, it requires data with annotations that are not always available in

surveillance scenarios. Moreover, a predefined threshold might not be an ideal

solution because of the dynamic nature of real-world surveillance scenarios. After

an extended period of time, the static threshold will become obsolete. Thus, an

adaptive threshold is a preferred approach in real-world surveillance applications.

Three adaptive thresholding approaches are tested.

The first method defines the threshold by extracting the mean tht = µ(D) of

the distribution of distances D. The distribution represents the distances between

the model and the data instances collected until the time t. In this approach, the

threshold is reevaluated for each data instance. If the distribution of distances

is more or less flat, the method is expected to identify large numbers of events

as unusual. Results for this approach can be seen in Table 5.8. The second

Class precision recall f1-score
0 0.99 0.37 0.54
1 0.23 0.98 0.37

avg 0.87 0.46 0.51

Table 5.8: AGG classification results thresholded with mean threshold; 0 - usual
class; 1 - unusual class

method defines the threshold by the mean of the distribution plus two standard

deviations, mean+sd: tht = µ(D) + 2 ∗ σ(D), where µ(D) is mean of the distances’

distribution D and σ(D) is the standard deviation. This approach defines higher

threshold values than the mean approach causing less false positives. Results

for this approach can be seen in Table 5.9. The third approach is based on the

expected fraction of unusual events in the dataset and defines the threshold by
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Class precision recall f1-score
0 0.91 0.60 0.72
1 0.24 0.67 0.36

avg 0.80 0.61 0.67

Table 5.9: AGG classification results thresholded with mean+sd threshold; 0 - usual
class; 1 - unusual class

selected the high value from the distances’ distribution: tht = D((1 − α) · N),

where α is a fraction of the data expected to be unusual and N is the number of

distances in the distribution. In the test dataset, 2% of the data is known to be

unusual leading to the value of α to be 0.02. This approach is named unusual

fraction, and the results can be seen in Table 5.10.

Class precision recall f1-score
0 0.90 0.83 0.86
1 0.37 0.53 0.43

avg 0.82 0.78 0.79

Table 5.10: AGG classification results thresholded with mean threshold; 0 - usual
class; 1 - unusual class

5.6.1 Evaluation

Figure 5.8 shows the distance distributions with the threshold values from the

three methods marked with a red line (Figures 5.8a-5.8e), and the corresponding

unusual event detection results (Figures 5.8b-5.8f). The threshold selection based

on the mean of the distribution of distances (mean) can be seen in Figure 5.8a.

The classification results based on this threshold can be seen in Figure 5.8b. This

method yields a 98% recall rate, but only 23% precision for the unusual class as

can be seen in Table 5.11. Despite high recall rates, this approach suffers from

high rates of false alarms which is reflected in the precision value. The threshold

selection from the distribution of distances can be seen in Figure 5.8c with the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Top row: distances’ distributions with the threshold value marked
with the read line; bottom row: binary results. The results are evaluated using
three methods: (a),(b) mean; (c),(d) mean+sd; (e),(f) unusual fraction;
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Th method Precision Recall F1-score
mean 0.23 0.98 0.37

mean+sd 0.24 0.67 0.36
unusual fraction 0.37 0.53 0.43

Table 5.11: Comparison of the unusual event class precision, recall and f1-score
values of threshold selection methods

corresponding binary results in Figure 5.8d. When the mean+sd approach is used,

the threshold is more sensitive therefore the precision is increased by 1%, but the

recall of the unusual event frames is reduced to 67% as can be seen in Table 5.11.

The table shows that f1-score, which combines precision and recall metrics, is

10% higher when unusual fraction methods is used when compared to mean+sd,

and 28% higher when compared to mean method. The improved accuracy of this

method outweighs the requirements for a priori information about the expected

rate of unusual events in the captured environment. This information can be

provided by experienced security personnel.

The fraction of the unusual events α could be estimated by the experienced

security personnel. The threshold selected from the distance distribution using

unusual fraction approach which integrates α in to estimation can be seen in Figures

5.8e. Figure 5.8f shows the corresponding binary unusual event detection results.

When compared with the other two methods, the precision of this method is

significantly increased as can be seen in the Table 5.11. Recall values suffered from

the increased precision. Therefore, to prove the advantage of this method the

recall of the two individual unusual events that were present in the test dataset

(each consisting of approximately 200 segments) can be seen in Figure 5.9a. The

graph shows how well two unusual events are detected. The two events are video

segments depicting two fighting events from the dataset (described in Section

4.3.1), namely Fight OneManDown and Fight RunAway2.
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(a)

(b)

Figure 5.9: Recall of the unusual events (a) The automatic thresholding approaches
applied to the online AGG results (b) F1 threshold selection for online unsuper-
vised learning (online AGG); batch unsupervised learning (GMM) and supervised
learning(SVM);
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The graph shows, that the mean method identifies both unusual events with

highest accuracy when compared to other thresholding methods. The precision

of this method is lowest, therefore the overall esult is not satisfactory (see Figure

5.8b). The mean+sd method identified the first unusual event with 89% accuracy,

but nearly missed the second event. The unusual fraction method detected the

first unusual event with 100% accuracy, and detected 37% of the second unusual

event. Taking into account higher precision rate by 19% when compared to the

mean approach, this method shows the most satisfactory result.

In addition to the comparison of the unusual event recall values obtained

by the three automatic thresholding methods (Figure 5.9b), the recall values are

plotted for all the evaluated classification methods with the F1-metric based

threshold (Figure 5.9a). The recall rate for the unsupervised approach (online

AGG) is improved with all three automatic threshold methods, when compared

to the F1 threshold which was originally used. Moreover, it can be observed that

when the F1 based threshold is applied, the second event is not detected at all

using this method, while the proposed automatic thresholding techniques were

able to identify at least a fraction of the second event. The mean approach showed

the highest recall, but with the drawback of having a high false positive rate. The

unusual fraction approach showed reasonable false positive rate (Figure 5.8f) and

showed 37% improved when the unusual event recall is compared to the F1 based

thresholding approach.

The unusual fraction thresholding approach yields the recall 9% lower than

the supervised approach (SVM) with the F1 threshold and 14% lower recall than

the batch unsupervised approach (GMM) with the F1 threshold. However, the

precision value is only 1% lower than the SVM approach and 11% higher than the

GMM approach. The results show that the precision of the results is improved by

applying the unusual fraction thresholding approach.
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5.7 Proposed Video Processing Flow

It can be concluded, that the threshold estimated from the data itself (based

on the results of the three proposed methods) provides better unusual event

detection results than the F1 optimized threshold which requires true labels of

the data. The advantage is due to its ability to adapt to the characteristics of the

data. The threshold estimated from the data also provides detection rates that

are more comparable to the supervised approach (SVM), which in the previous

sections was identified as a benchmark for unusual event detection. Based on the

results from the previous experiments, the online agglomerative algorithm (online

AGG) with dynamic threshold estimated using the unusual fraction approach has

comparable capability to identify unusual events to the SVM approach. The ideal

unusual event detection method needs to conform to the requirements of real-

world surveillance applications identified at the beginning of this Chapter, namely

(a) ability to learn without the labels of the training data (b) ability to process

huge volumes of continuous data (c) ability to learn parameters of the algorithm

from the data itself. The approach that takes into account the requirements is as

follows:

• Temporal segmentation: Video segmentation using windowing technique

with overlapping windows (15 frames length and 1 frame shift in these

experiments)

• Feature vectors: Dense trajectory based local regions described using mo-

tion boundary histogram methods and quantized using bag of visual words

approach

• Training: Online agglomerative clustering method

• Classification: Unusual fraction threshold estimated from the past data
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The results acquired using this approach are further analysed in the next section

that focuses on the analysis of the falsely identified data instances and provides a

qualitative evaluation of the results to aid in better understanding of the results

obtained.

5.8 Qualitative evaluation

In this section, a qualitative evaluation of the binary results is presented, acquired

using the unusual event detection approach summarized at the end of the previous

section. A temporal averaging filter of width 10 is applied to join the frames that

are consequently detected as unusual and to remove the frames that are detected

in isolation. Figure 5.10 shows the resulting 12 video segments, where events

Figure 5.10: Event detection results for qualitative evaluation

enumerated with the numbers 4 and 11 correspond to the correctly identified
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unusual instances (the true positive (TP)). The incorrectly identified instances (the

false positive (FP)) correspond to events identified by numbers 1 to 10 (except 4).

The missed part of the ground-truth fighting event, (the false negative (FN)) is

identified by number 12. In Figures 5.16-5.15 representative images are shown

for each identified instance. The samples of the correctly identified usual even

frames (the true negative (TN)) are shown in Figures 5.13 and 5.14.

True Positives (TP) are the video segments that were correctly identified as

unusual. Figures 5.11 and 5.12 show sequences of frames that represent the

fighting event that are correctly identified as unusual events. The events are

distinguishable by excessive hand movements, falling on the ground activity

(Figure 5.11) and the fighters approaching each other at a fast pace (Figure 5.12).

Figure 5.11: TP - (4) - A fight with one man falling down on the floor (7.6s)

Figure 5.12: TP - (11) Two fighters approaching each other (1.3s)

True Negatives (TN) are the video segments that were correctly identified as

usual. The frames that belong to the usual events correspond to empty scenes

and people walking around. A few samples of the correctly identified usual event

of walking people can be seen in Figures 5.13 and 5.14.

False Negatives (FN) are the video segments that belong to unusual events but

were missed by the algorithm. Figure 5.15 shows a sequence of frames that belong
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Figure 5.13: TN A person browsing (20s)

Figure 5.14: TN - A person walking out of the scene (3s)

to the fighting event according to the ground-truth but that was missed by the

proposed algorithm. The missed sequence is part of the fighting scene, but has

an inadequate amount of motion in the fighting action (event 12 from the figure

5.10).

Figure 5.15: FN - (12) A person attacking another person (7.2s)

False Positives (FP) are the video segments that are falsely identified as unusual.

Figures 5.16 - 5.24 show the sequences of the frames that were falsely detected as

unusual events.

Figure 5.16: FP - (1) coming towards the middle, turning towards the camera and
picking up both hands (active gestures) (1.1s)
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Figure 5.17: FP - (2) facing the camera and lowering hands towards sides (after
raising them) (1.4s)

Figure 5.18: FP - (3) - Both fighters enter the scene from with a fast pace (3s)

Figure 5.19: FP - (5) A person sitting up after the fight (1s)

Figure 5.20: FP - (6) A person standing up after the fight (1s)

Figure 5.21: FP - (7) A person walking after standing for a while (0.8s)

Events 1 and 2 from Figure 5.10 depicted waving to the camera as can be seen

in Figures 5.16 and 5.17. A scene after the fight where a person is standing up

from the floor (event 5 and 6 from Figure 5.10) can be seen in Figures 5.19 and 5.20.

Event 7 from Figure 5.10 is an incorrectly classified event that represents a person
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Figure 5.22: FP - (8) A person walking in a fast pace (1.7s)

Figure 5.23: FP - (9) A person waving a paper towards the camera (1.3s)

Figure 5.24: FP - (10) Walking away while waving a white paper in his hand (1.2s)

walking as can be seen in Figure 5.21. A person walking at a fast pace, event 8

in Figure 5.10, can be seen in Figure 5.22. A person waving a piece of paper and

walking away, events 9 and 10 in Figure 5.10 can be seen in Figures 5.23 and 5.24.

Visual inspection of the frames falsely detected as unusual shows that most of the

false detections are in fact outliers in the dataset. For example, a person standing

from the middle of the floor, a person waving with his hands or a piece of paper.

Only the event 7 shown in Figure 5.21 can be marked as true FP events, as it has a

person walking activity which is a usual scene in the dataset and is not of interest.

5.9 Conclusions

The experiments conducted in this chapter were designed to evaluate the trade-

offs in accuracy that need to be taken into consideration when the constraints of
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the real-world surveillance applications are considered when implementing an

unusual event detection system.

The first constraint identified for real-world applications is the lack of anno-

tated training data. To evaluate how the accuracy differs when the training data

annotations are provided and when the algorithms are trained without the data

annotations, supervised (SVM) and unsupervised (GMM) training methods are

applied. The results showed comparable accuracy of unusual event detection,

but the unsupervised method suffered from high false detection rate. The false

detections reduced the overall accuracy of the results, when measured by the area

under curve (AUC-ROC) measure, by 8%.

Two unsupervised algorithms are compared (GMM and AGG) to investigate

the second trade-offs of real-world unusual event detection. One of the algorithms

(GMM) learns the model through an iterative optimization process called expecta-

tion maximization (EM) in batch mode. This approach requires an entire training

dataset at each optimization step. The second algorithm (AGG) learns the model

through incremental updates. This method gradually learns the model making

it available for classification right after its initialization. The results showed that

while the AGG method improved the precision of the results by 19% when com-

pared to the GMM approach, it missed one important event which would not be

acceptable in a real-world environment. Further analysis of the results revealed

that the missed event could have been detected if the threshold value for unusual

events was lowered.

Further experiments were carried out to find the optimal threshold value.

Three threshold methods that are estimated directly from the data were investi-

gated in combination with the AGG classification approach. The binary results

were compared with the results acquired by a threshold method that requires

labeled data to do the optimization. The results showed that the threshold esti-

mated from the data improved the recall of the unusual events, while reducing the
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precision of the unusual event detection by 10%. To investigate the reasons that

caused lower precision values, a qualitative evaluation of the results was carried

out. The conclusion was made that the false detections affected the precision of

the results. The falsely detected events were indeed deviations from the normal

scenarios in the dataset, but were not part of the fighting events that made up the

ground-truth unusual class.

It can thus be concluded that the unsupervised approaches are valuable in de-

tecting outlier events that are not known in advance. In surveillance applications,

it is reasonable to assume that the user input becomes available at some stage

of the processing due to the typical setup of the visual surveillance. Therefore,

the annotations can become available as well, and the supervised method can

be utilized to identify events that have already happened. A combination of the

supervised and unsupervised methods, when both methods are implemented in

an online mode, is expected to improve the overall accuracy of the unusual event

detection system. The combined system would be able to identify unusual events

that are not known in advance using the unsupervised approaches, and to identify

the unusual events that are known to happen in the monitored environment. The

next chapter is dedicated to investigating the fusion of the classifiers and the

requirements that need to be taken into account when integrating a combina-

tion of the supervised and unsupervised classification methods into real-world

surveillance systems.

5.10 Summary

The experiments discussed in this chapter investigated online and batch based

training methods, as well as supervised and unsupervised ones. The accuracy

differences based on the AUC measure of ROC curves showed that classification

accuracy of a method based on an online training is 1% lower when compared
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to the batch training approach. The difference in classification accuracy between

supervised and unsupervised approaches is found to be 8%, where the supervised

approach is superior. Therefore, there is a 9% accuracy trade-off to be made

when implementing unusual event detection algorithms with the constraints

imposed by real-world applications. Using a threshold that is estimated from

the data itself showed better results than the F1 threshold estimation method

that requires true labels of the data. The accuracy of the results is showed on

a per-segment basis due to the small number of available interesting events.

When the accuracy is evaluated on this granularity, it could be compared to

the object detection evaluation per-pixels rather than per-object lower accuracy

numbers are observed in this situation, but more detailed information about the

actual performance of the algorithm can be seen. The real world data is expected

to show similar accuracy levels. Moreover, qualitative analysis of the online

unsupervised approach showed that the accuracy measures mostly reflect the

ability to detect the predefined ground-truth (fighting) events. Unusual events

that were identified as false detections in the experiments were somewhat different

from the standard scenes in the dataset. In real-world unusual event detection

applications, those events may be of interest to the user. Due to the ability of the

supervised classification method to identify known events, and the ability of the

unsupervised method to identify interesting, but unknown, events, the following

chapter reports on experiments investigating a hybrid classification approach.
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Chapter 6

Combining classifiers

6.1 Overview

In previous chapters, a number of machine learning techniques for unusual event

detection were presented. The trade-offs that need to be made for them to be

suitable for real-world applications were investigated. The conclusions were

that both supervised and unsupervised methods have complementary properties

that could be utilized via a combination of these methods. The experiments

showed that unusual event detection accuracy using supervised classification

approach was 9% higher than the accuracy of the online unsupervised method.

Nevertheless, through the qualitative evaluation of the results it was found that

the accuracy of the unsupervised methods was affected by the falsely detected

unusual events that were salient in the dataset and could be of interest in real-

world scenarios. This chapter explores the potential improvement of the overall

accuracy of the system. First, the stability of the unsupervised classification

approach is analyzed using a bootstrap technique, and a bootstrap aggregation

technique is investigated for stabilization of the method. Stability analysis using

a bootstrapping techniques is a novel approach to the evaluation of the algorithm.

Then the combination of both methods is explored in order to improve the results
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of the overall system. Combination of supervised and unsupervised visual event

classification algorithms is novel in research on visual surveillance.

6.2 Motivation

There are two factors in favor of applying the online unsupervised classification

approach. One factor is the ability to make the predictions without having the

labeled training examples of the events of interest. The second factor is the

ability to continue learning for an extended period of time without increasing

the computational complexity or the demand for data storage. The first factor

is satisfied by the classification methods that are unsupervised, and the second

factor is satisfied by the online learning methods. The combination of the two

creates a solution applicable in real-world applications. One more important

factor of a learning algorithm is its sensitivity to small changes to its input data.

The affect these small changes have on the results can be explored by evaluating

stability. Stability evaluation is an important part of algorithm development as it

shows how well the learning algorithm can generalize.

The experiments conducted so far reported on the accuracy of the online unsu-

pervised classification method when compared to the state-of-the-art supervised

classification approach. The analysis of the results showed that higher accuracy is

achieved with the supervised approach when detecting unusual events that are

known in advance while the unsupervised approach is superior in identifying

unusual events that are not known in advance. Based on this, a combination

of the methods is proposed. The combination is expected to be able to identify

unknown unusual events, and the unusual events that are already known.

Due to the lack of the information about the usual and unusual events in the

captured environment, initially the predictions are made solely by the online

unsupervised method. With the progress of time, the user can add labels to
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certain usual and unusual events. To optimize the use of user input, active

learning techniques can be applied. Active learning algorithms focus on choosing

the data points that would give the most valuable information to the learning

algorithm. The user is then asked to label only a small subset of overall data

points. A list of active learning techniques are summarized and compared by

Settles (2010).

Once labeled examples for both classes become available, the supervised

classification method can be trained to identify known events. At this stage, the

knowledge of the supervised method can be integrated into the system.

First, the stability of the online unsupervised methods is investigated in order

to test the proposed idea. Next, incremental learning of supervised and unsuper-

vised methods is considered followed by a proposal of approaches to combine

the two methods. Experiments are conducted to validate the proposed ideas on

the benchmark surveillance video dataset.

6.3 Algorithm Stability

Most of the unsupervised activity detection methods focus on the accuracy of the

results rather than the stability of the algorithm (Zhong et al., 2004; Sillito and

Fisher, 2008; Breitenstein et al., 2009; Loy et al., 2010). In addition to the overall

accuracy of the classification algorithms, analysis of the stability can show how

variations of the input can influence the output of the system. Bousquet and

Elisseeff (2002) showed that the stability of the algorithm in certain cases ensures

good generalization. The stability of the classification algorithm can be evaluated

by investigating the variance of the results with the perturbed training data. The

affect of the changes to the results of the classification reveals the stability of the

algorithm. Luxburg (2010) lists five different methods to perturb the dataset for

stability investigation:
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1. Draw a random subsample of the original dataset without replacement.

2. Add random noise to the original data points.

3. Reduce the dimensionality of the data using random projections into low-

dimensional space.

4. Sample data from the model, if the generative model is known for the

dataset.

5. Draw a random sample of the original data with replacement.

In all cases, precautions must be taken when choosing the amount of the additive

noise or the size of the training datasets. For example, if too much noise is added

or the subsample of the dataset is too small, the structure that the algorithm is

trying to find might be destroyed. If the changes in the dataset are too small,

then the observed stability would be trivial as the algorithm will always obtain

the same result. The fifth approach from the list is known in the literature as a

bootstrap and is advantageous when compared to other methods. It does not

require setting of the size of the subsample for the perturbed dataset.

The bootstrap method involves creating multiple training sets Xb from the

original training dataset X = x1, ..., xN , where N is the number of training data

points. Each set is created by randomly drawing N samples from X with replace-

ment. This means that the same training item can appear more than once, whereas

other items may be left absent from Xb. Each set has the same size as the original

training dataset. Each bootstrap dataset Xb is then used to train a separate copy

of the predictive model Mb. The stability of the method is assessed through the

variation of the predictions between the bootstrap models Mb.

In addition to the evaluation of the classification algorithm’s stability, the

bootstrap models can be combined to improve the stability of the algorithm

(Parker, 2010). A final prediction can be given by averaging the predictions of M
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models (Bishop, 2006):

ycom(x) =
1

M

M∑
m=1

ym(x) (6.1)

where ycom is the final prediction and ym(x) is the prediction of a bootstrap model

m for instance x.

6.3.1 Experimental setup

The SVM classification approach is excluded from the stability analysis as its

stability is well analyzed in the literature (Bousquet and Elisseeff, 2002). For the

online agglomerative clustering method (AGG), the variation between classifica-

tion results produced by the bootstrap models is assessed. Aggregation of the

bootstrap models is evaluated in order to improve the stability of the algorithm.

The AGG model is set to have 100 clusters. The reasoning is that as long as the

number of clusters is reasonably big, the inherent clusters of the sample space is

covered with some redundancy without significantly affecting the model.

Video events are represented by the temporal segments extracted using a

windowing technique with a window 0.6s long and 0.04s shift. Each segment is

represented by the occurrences of the spatio-temporal regions in the codebook

consisting of 1000 instances, based on the previous experiments. Each spatio-

temporal region in a temporal segment is represented by the motion boundary

histogram (MBH). MBH is extracted from multiple scale regions around the

trajectories of local points (for more details about the descriptors see Chapter 4).

Starting with a single bootstrap model, aggregation of up to 50 bootstrap models

is tested. Each aggregation is repeated 10 times to evaluate the variance of the

final results. The CAVIAR1 dataset is used for the experiments using the same

setup as in the Chapter 5. The models are trained using 80% of the overall data.

1Data from EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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The rest of the data is used for testing. The unusual class data is divided into

training and testing sets so that 50% of it goes to the training data (comprising 2%

of the data), and the rest of it is left for testing.

6.3.2 Evaluation

Variance of the online agglomerative clustering algorithms is assessed using

an area under curve (AUC) measures for both receiver operator curves (ROC)

and precision-recall curves (PR). Figure 6.1 shows the results, where Figure 6.1a

shows the AUC-ROC statistics and Figure 6.1b shows the AUC-PR statistics. Both

(a) (b)

Figure 6.1: Incremental bootstrap aggregation from 1 to 50; variance over 10
random experiments

figures show the variance of the bootstrap aggregation results starting from single

bootstrap, up to 50. Each increment in the bootstrap aggregation is repeated 10

times and corresponding variances are shown using the vertical error-bars. The

stability of the AGG method is shown in the first error-bar of the both figures,

where no aggregation is applied. Both AUC-ROC and AUC-PR metrics show

9% variance, which is acceptable taking into account the variety of events used

to train the algorithms (see Table 6.1). The aggregation of results from multiple

bootstrap models reduces the variance to 0.5% and 1.7% when measured by AUC-

PR and AUC-ROC metrics respectively. The average accuracy of the results does
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Figure 6.2: Variance of the event detection results with a model combining an
increasing number of aggregated bootstraps

not change with the aggregation of more bootstrap models, and it stays at 72.8%

for AUC-ROC and 48.1% for AUC-PR.

When improving stability by combining multiple models acquired from the

same training dataset using bootstrapping, it is important to note that each boot-

strap added to the decision making increases the complexity of the model. There-

fore, it is important to minimize the number of bootstraps used. Figure 6.2 shows

the variance trends with an increasing number of bootstraps starting from a single

bootstrap, and finishing with the variance of the results from the model that

aggregates 50 bootstrap models. It can be observed from both AUC-ROC and

AUC-PR statistics that the variance steeply decreases for both metrics when up

to six bootstraps are aggregated. Results from the aggregation of six bootstrap

models reduces the variance by 72% from 9.3% to 2.6% for AUC-ROC, and by

80% from 9.2% to 1.9% for AUC-PR. Increasing the number of bootstraps up to

50 reduces the variance by further 10% and 5% AUC-ROC and AUC-PR metrics.

A further reduction of the variance is not significant compared to the increased

complexity when 50 models are created.
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It can be concluded that combining bootstrap classifiers does not increase the

overall accuracy of the results, but increases the stability of the model. Com-

bination of the models that capture different aspects of the data is proposed to

improve the accuracy of the results, where diverse models can bring complemen-

tary information for the decision making.

6.4 Incremental learning

Incremental learning is a machine learning paradigm where the learning process

takes place whenever new examples emerge to adjust what has been learned

according to the new examples (Ade and Deshmukh, 2013). There are three main

advantages of using incremental learning in real-world surveillance applications:

1) it works well in limited memory and processing power scenarios 2) it can deal

with sequential flow of information 3) it can adapt to the changes of the data after

the learning phase is over.

There is a need to scale up learning algorithms to handle more data as the

databases used for modeling the data increase in size. Incremental learning is one

of the solutions to the scalability problem, where data is processed in parts, and

the results combined so as to use less memory (Syed et al., 1999a). Incremental

learning is also used in applications where all the data is not available at once,

and it is streamed one sample at a time or in chunks of data at a time. Syed et al.

(1999b) first proposed incremental learning of the SVM. Instead of retraining the

model at every increment with all the data, the approach only retrains the model

using only the support vectors and the new data. Experimental results showed

that compared to the standard SVM approach, 0.5% loss of accuracy is introduced.

This method was applied by Lu et al. (2014) for human recognition task. The addi-

tional condition was added to preserve the Karush-Kuhn-Tucker (KKT) condition

(Pontil and Verri, 1998) on the reused training data. Incremental learning is also
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a frequent choice for object tracking algorithms to adapt gradually to the chang-

ing representation of objects. Ross et al. (2007) applied an incremental principal

component analysis (PCA) algorithm for the representation of the tracked objects,

and showed that it is faster and more robust to model object appearance via incre-

mental rather than batch PCA approach. Mixture of probabilistic PCA (MPPCA)

was used by Kim and Grauman (2009) to identify unusual activities, where the

initial MPPCA model was learned from a small sample of annotated data, and

the model was updated incrementally with each new data sample. Xiang and

Gong (2008) constructed an incremental HMM model to represent normal visual

behaviour at the entrance to the restricted area. They initialized the model using

a small bootstrap dataset and continued learning incrementally whenever a new

behaviour pattern was captured. The model structure was adapted incrementally

to accommodate changes in the definition of normality/abnormality when the

visual context changes. Similarly, Ouivirach et al. (2013) applied incremental

maximum likelihood (IML) algorithm to HMM model that requires updates only

of the sufficient statistics as new events occur. Breitenstein et al. (2009) applied

incremental clustering algorithm to continuously train the model of the scenes

captured by a web-cam in the Time Square, New York. In their approach, with

every new data sample the closest clusters are merged and only the statistics of

the clusters are retained. It is important for real-world surveillance applications to

investigate the properties of the algorithms when the amount of training data is in-

creasing. The following experiments are conducted to investigate the continuous

learning effect on supervised and unsupervised classification approaches.

6.4.1 Experimental setup

The experiments evaluate how the supervised and unsupervised methods respond

to increasing amount of training data. The two algorithms that were investigated
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Clip ID Title of The Video Clip Duration
1 Browse WhileWaiting1 31.1s
2 Browse WhileWaiting2 1min 15.2s
3 Fight Chase 5.32s
4 Fight OneManDown 7.8s
5 Fight RunAway1 8.24s
6 Fight RunAway2 7.84s
7 Browse1 41.8s
8 Browse2 35s
9 Browse3 54.6s

10 Browse4 45s
11 LeftBag AtChair 21.5s
12 LeftBag 57s
13 LeftBag PickedUp 53.6s
14 LeftBox 34s
15 Meet Crowd 19.1s
16 Meet Split 3rdGuy 36.4s
17 Meet WalkSplit 24.4s
18 Meet WalkTogether1 27.7s
19 Meet WalkTogether2 32.5s
20 Rest FallOnFloor 39.7s
21 Rest InChair 39.7s
22 Rest SlumpOnFloor 35.9s
23 Walk2 41.6s
24 Walk3 54.6s

Table 6.1: List of events used for training

in the previous experiments are used. The SVM classification algorithm with a

Radial Basis Function (RBF) as a kernel with parameters C and γ set to 1 and 1/d

respectively (d is the number of features). The online agglomerative clustering

method (AGG) composed of 100 clusters. The parameters are the same as in the

previous experiments. The representation of video events is the same as in the

previous section. The CAVIAR dataset is utilized for the experiments as it is a

good representation of surveillance scenarios. The training data is incremented

using video clips of approximately 35 second length until all the data is observed.

Each increment of data corresponds to the video-clips that are listed in Table 6.1.

Testing is performed on the 80% of the overall data - the same for all the increment
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stages. The experiments are randomly shuffled ten times for cross-validation.

6.4.2 Evaluation

AUC-ROC and AUC-PR based performance evaluation results can be seen in

Figure 6.3a and Figure 6.3b respectively. In the graphs, the x-axis represents the

(a) (b)

Figure 6.3: Incrementing training data experimental results a) AUC-ROC statistics
b) AUC-PR statistics

increasing number of video-clips used for training. The accuracy measure is

shown on the y-axis. The error bars at each increment show the performance

variation between cross-validation experiments.

To be able to create a model using the SVM approach, examples of both usual

and unusual events are required. When only a few training examples are available,

it is very likely that all randomly chosen clips belong to the usual class. In this

scenario, the supervised classification method is not able to create a model because

it requires examples from both classes to be available for training. A solution to the

situation where the model cannot be created is to set all the results to 1. In other

words, in the case of the unavailability of the model, all the events are predicted

to be unusual with maximum probabilities. It is a reasonable assumption for a

real-world scenario, meaning that if the classifier is not able to make a prediction
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on the data, this data has to be sent to the user for the inspection. The dashed

lines in Figure 6.3a and Figure 6.3b show the accuracies achieved when the model

is absent. The all-unusual results produce 0.5 accuracy with AUC-ROC metric,

and 0.579 accuracy with AUC-PR metric. The accuracy is slightly higher with

AUC-PR metric because the true-negatives2 are discarded from the equation.

The accuracy of the AGG method is stable considering the AUC-ROC metric,

but there is no significant improvement on the average accuracy with increasing

amount of training data. The ROC metric is affected by the true-negatives due

to the domination of the usual data in the dataset. Thus, the representation of

the usual class remains stable with the introduction of more data. A 3% increase

in average accuracy is observed with the AUC-PR metric. The PR metric does

not take into account the true-negatives and indicates how well the unusual

class instances are detected. The slowly increasing AUC-PR value in Figure 6.3b

shows, that the accuracy of the unusual event detection algorithm increases when

more data is available for training. On the other hand, a significant increase in

accuracy can be seen with increasing amount of training data provided to the

SVM modeling approach. Using the SVM approach, the AUC-ROC metric is

improved by 20% if trained with all the available data, when compared to training

with a single video clip. The result indicates that the usual class samples are better

modelled with more training data. The AUC-PR metric is improved by 7% with

the same data increments, showing that the data instances of the unusual class

also benefits from more training samples. The lower rise of the AUC-PR metric

is due to the low probability of the unusual data in the dataset. SVM method

shows high dependency on the training data which can be seen by error-bars in

Figure 6.3a. When more training data is used, the dependency on training data

decreases. Therefore, to ensure stability of the supervised training algorithm,

training samples have to be chosen carefully.

2The true-negatives are the usual class samples correctly identified as usual
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The result shows that both methods benefit from the increasing amount of

training data even if the data is dominated by the usual class events. The ability

to identify usual events does not change when more training data is used with the

unsupervised method (AGG), but the ability to identify unusual events slightly

increases. On the other hand, the accuracy of the supervised method (SVM)

significantly increases when more data is introduced. The higher increase of the

supervised approach accuracy rather than the unsupervised approach is due to

availability of the labels for the data. The next section investigates combination of

the SVM and GMM methods in order to increase the overall performance of an

unusual event detection system.

6.5 Combining classifiers for surveillance applications

A key goal of the combination of the models created for the same problem is to

obtain a better composite global model, with more accurate and reliable estimates

or decisions. The underlying assumption of fusing multiple classifiers is that each

participating has a merit that deserves exploitation (Smits, 2002). The presumption

in classifier selection is that each classifier is an expert in some local area of feature

space and the classifiers are considered complementary. The novelty of the

fusion approach proposed in this section is that it combines an unsupervised

classification method with a supervised classification method. The fusion method

is also adapted to an online data stream and only information from the past is

used to learn weights of the fused components.

A general approach to combining classifiers is the fusion of the results via

merging schemes, also called decision level fusion. Among the most popular

approaches to decision level fusion are linear, logarithmic, and voting approach

(Sinha et al., 2008). Linear fusion is popular due to its simplicity. Its output is a
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weighted sum of the probabilities produced by each model:

Plinear(A) =
K∑
i=1

αiPi(A) (6.2)

where Plinear is the combined probability from a set of models; αi is the weight

given to the i-th model; Pi(A) is the probability of the i-th model for the event A;

K is the number of combined models.

An alternative to linear fusion is logarithmic fusion. It is different from the

linear approach, as within this formulation, the combined probability is zero if

any model assigns a probability of zero. This approach consists of a weighted

product of the model outputs:

Plog =
K∏
i=1

Pi(A)αi (6.3)

Another simple method for combining the results of multiple models is to use

a voting procedure where each model must generate a decision instead of a score.

Among the popular voting techniques are majority vote, maximum, minimum

and median votes.

A less intuitive approach of combining the results is to use a machine learning

method, such as SVM, and to treat the opinions of the experts as data themselves.

Therefore, the opinions form an input to the classifier and a function for the final

decision making is learnt.

When combining supervised and unsupervised classifiers, each method has

expertise in different problems and brings complementary information to the

system. When the supervised method is to be used in real-world surveillance

applications, examples from both usual and unusual classes are required. Fortu-

nately, most of the surveillance applications have an advantage of having a user

at the other end. The surveillance application setting usually has a user in the
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loop who is either dedicated to monitor video data in real-time, or someone who

occasionally looks at the recorded data to see what has happened. Therefore, the

knowledge about the events becomes available and can be made accessible to

classification algorithms.

6.5.1 Experimental setup

Two decision level fusion methods are investigated in the further experiments:

MAX-fusion and SVM fusion. These two methods are chosen based on the appli-

cation targeted by the research. The main feature of unusual event detection in

visual surveillance applications is that missed events are more serious than falsely

detected ones. First method is winner-takes-all or MAX-fusion method. MAX-fusion

method compares the predictions of the participating classifiers and the highest

probability value for being unusual is set to be the final result. This method is

suitable for an event detection task where missed unusual events are less tolerable

than false detections. This method is based on the voting approach mentioned in

the overview. The second method is an SVM fusion approach. It takes the output

from the two classifiers together with the labels acquired from the user, and learns

the decision function for the final prediction. This method is motivated by the

unknown relationship between the two methods that can be learnt from the past

predictions.

The parameters for the SVM and AGG methods are kept the same as in the

previous section. The SVM-fusion method uses Radial Basis Function (RBF) as

a kernel. Parameters C and γ are set to 1 and 1/d respectively, where d is the

number of features. The incremental learning is implemented as described in the

previous section.
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6.5.2 Evaluation

A comparison is made between the MAX-fusion approach and the SVM-fusion

approach, as well as between the predictions acquired using the SVM and AGG

models independently. The results from all the classifiers are shown in Figure

6.4. The results are displayed using the AUC-ROC metric in Figure 6.4a. AUC-PR

metric results are showed in Figure 6.4b. The results are plotted on the training

increments to simulate the real-world scenario. The results show that once the

(a) (b)

Figure 6.4: Combination of supervised and unsupervised classification methods
with different weighting schemes

supervised classification approach (SVM) has obtained enough information to

train both usual and unusual class models (number three on the X-axis of the

Figure 6.4, at which point three video sequences were used for training the

algorithms), the results of both fusion approaches show improvements to the

unsupervised method (AGG) classification alone. The two fusion methods differ

in their results. The overall accuracy of the results, when both usual and unusual

classes are treated with the same importance, which is represented by the AUC-

ROC metric (Figure 6.4a), the MAX-fusion results in higher accuracy to the machine

learning based SVM-fusion. On the other hand, when the detection of unusual

events is given more importance, represented by the AUC-PR metric (Figure 6.4b),
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the SVM-fusion approach shows superior results. The unusual event detection

recall (Figure 6.5) is shown to be 13% better for the SVM-fusion approach than the

MAX-fusion approach. The result is only 4% lower than the benchmark result of

Figure 6.5: Recall of the unusual events

the SVM classification and as can be seen from the temporal plots of the results,

it detected most of the unusual events that were identified as outliers after the

qualitative evaluation in Section 5.8 (See Figure 6.6). The results show that all

of the unusual events identified during qualitative evaluation have a sample of

segments identified as unusual. In addition, both of the fighting events have a

high recall rates.

6.6 Validation of algorithm invariance

The Ilids dataset (U.K. Home Office, 2011) is chosen to validate the invariance of

the proposed algorithms to changes in the environmental conditions. The dataset

comprises of CCTV video footage in real operating conditions with potential
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(a) (b)

Figure 6.6: Unusual event detection results thresholded based on the optimized
F − 1 measure a) AGG b) SVM-fusion

threats captured. A video from sterile zone monitoring is chosen as a validation

dataset because of its definite interpretation of the events. The duration of the

events captured in the dataset span from 31sec to a 2min 29sec. The sample

frames from the dataset can be seen in Figure 6.7. Two sample events are showed

in the figure with the superimposed grade of time to allow for the perception

of time-span. Event (a) in the Figure is captured at night time and lasts for one

minute. It depicts a person escaping through the fence by slowly approaching,

cutting a hole and escaping to another side through it. The second event (b) lasts

for 31 seconds and depicts a person bringing a ladder, trying to climb over the

fence and due to unsuccessful attempt turning back to where he came from.

The algorithm is validated with the subset of the Ilids sterile zone dataset

of 37min 11sec long and consists of nine events depicting a person or people

trying to cross the wall. Five minutes of data was used to train the model, and

the rest of the data was used for testing. Results are shown in the Figure 6.8.

The results confirm the applicability of the unusual event detection algorithm to

the sterile zone environment based on Figure 6.8a. The dashed line shows the

boundaries of the ground-truth unusual events. Because the descriptors used to

describe visual events are based on motion, only the moving part of the unusual
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(a)

(b)

Figure 6.7: Sample events superimposed on single frames: taken from Ilids dataset
sterile zone video data

event is detected. The figure shows that the beginnings of each unusual event

are identified as unusual with high probabilities. The remainder of the events

are static - depicting a person cutting the fence. Because the person is always

facing the back to the camera, no motion is captures in this period of time. There
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(a)

Figure 6.8: a) ROC curve b) Precision-Recall curve c) Thresholded temporal
unusual event probabilities

(a) (b)

is also some motion at the end of the events where the person is moving to the

other side of the fence. Figure 6.9a depicts the ROC curve based on segment

detection. Low accuracies showed in the ROC graph are affected by the unusual

event parts that have no motion. The descriptors based on spatial information
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need to be integrated to the preprocessing step to identify those areas as unusual.

Precision-recall curve (Figure 6.9b) shows that only the segments belonging to the

unusual events are classified with high probabilities to be unusual based on the

high level of precision when the high threshold is applied.

The classification results acquired using Ilids dataset show that the algorithm

is invariant to different scenarios as all the parameters are left unchanged when

running the experiments.

6.7 Conclusions

In the previous chapter, it was concluded that the supervised classification ap-

proaches are optimized to detect known events, whereas the unsupervised ap-

proaches are valuable in detecting outlier events that are not known in advance.

The combination of the two methods was suggested to improve the overall accu-

racy of the unusual event detection system.

First, stability evaluation was conducted to investigate the issue of the stability

of the online unsupervised classification approach (AGG). The results showed

that the variance of the AGG approach is 9%. Aggregation of bootstrap models

is proposed to improve the stability, and the experiments showed that by ag-

gregating six bootstrap models to get a final decision the variance is reduced to

approximately 2%. Aggregation of more bootstrap models proved to increase the

stability only slightly with a high computational overhead.

The incremental learning approach has to be implemented in real-world ap-

plication scenarios due to its ability to keep complexity levels constant with

increasing amounts of data. Experiments were carried out to investigate the effect

that incremental training has on the supervised (SVM) and the unsupervised

(AGG) training methods. The results showed that the AGG method has stable

accuracy from the early stages of learning, while the SVM approach has increas-
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ing accuracy with increasing amount of training data. The bigger effect on the

supervised method (SVM) is due to the annotations that are provided together

with the data at each increment. It was concluded, that the unsupervised method

(AGG) requires a longer period of training for the model to improve, whereas the

unsupervised method (SVM) can improve much faster. The results are consistent

with the real-world implementation, where the unsupervised method would

integrate all the incoming data, while the supervised method would integrate

only the annotated data which results in less data available for this approach.

Two fusion approaches are implemented to test the idea of combining the

supervised (SVM) and the unsupervised (AGG) classification approaches. The

results show that both fusion approaches result in increased unusual event detec-

tion accuracy when compared to the unsupervised approach applied on its own.

The SVM-fusion showed the benefits of both classification approaches where all of

the identified unusual events, that were not part of the ground truth in the initial

experiments were detected together with high recall rates for the unusual events

identified as the ground-truth data.

6.8 Summary

This chapter investigated a user feedback approach which allows for a super-

vised method to be incorporated into decision making in the event-detection

system when data annotations become available over time. This information

acquired over time allows the real-world surveillance application to use a su-

pervised classification approach which when combined with the unsupervised

approach improves the overall performance of the event detection system. The

experimental results show the increased accuracy when the two methods are

combined when compared to the unsupervised only approach. Therefore, making

the application more reliable when deployed in the real-world environment. The
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following chapter discusses the overall results and gives further suggestions for

investigations and possible improvements of the results.
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Chapter 7

Conclusions and Future Work

7.1 Overview

In this thesis, the requirements for real-world surveillance applications are iden-

tified, and experiments carried out to evaluate the trade-offs that need to be

taken to accommodate these requirements. The objectives of the thesis shape the

research questions and thesis contributions reported throughout the thesis. This

chapter overviews the findings of each chapter, revisits the research questions in

retrospect, and examines the research questions in the light of the experimental

results. Suggestions for future work are also proposed.

7.2 Thesis summary

In Chapter 1, the thesis is introduced by providing motivation, a brief overview

of the research area, and hypotheses. Motivation for carrying out the research is

based on three facts. Firstly, due to the increased security concerns, the number

of video cameras deployed in public and private places such as airports, railway

stations, shopping malls, business and private residences, is growing. Moreover,

monotonous tasks can be automated to improve the efficiency of the human
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operator that unavoidably suffers from limited concentration span. Finally, most

of the research in the literature is focused on optimizing different parts of event

detection task and does not focus on a combination of these parts into a real-

world applicable system. The combination of these facts forms the motivation

for the research conducted in this work. A brief overview of the research in the

visual surveillance area identified the dependence of the event representation

in surveillance applications on object detection and tracking techniques. The

techniques are reliable only in constrained environments where the moving objects

are clearly separable from the surrounding scenes and each other for the duration

of the activity. Furthermore, most of the classification algorithms rely on the

examples of each event to be identified, which are not always available in the

real-world applications. The belief is that the detection of unusual events would

benefit visual surveillance systems, but it requires investigation and evaluation of

the methods that are applicable to real-world surveillance applications. Following

the brief overview of the research in surveillance applications, the hypotheses are

further expanded into the research questions that are investigated throughout the

thesis. The research questions are:

1. Could unsupervised classification techniques be applied to unusual event

detection and would it yield comparable results to the state-of-the-art super-

vised classification techniques?

2. Event representation is an essential part of the event classification task.

Can space-time visual events be efficiently represented without relying

on detection of the moving objects, accuracy of objects’ shape, and their

complete motion trajectory?

3. Could online training techniques be used as an alternative approach for

training in applications where optimization techniques are not feasible?
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4. Could a supervised classification method be integrated into the unsuper-

vised system to benefit from the advantages of both techniques?

A literature review of research in visual event detection for surveillance appli-

cations is reported in Chapter 2. The review starts with an overview of the research

in visual surveillance. Then the unusual event detection research is summarized.

An overview of the methods for the event detection steps that include event repre-

sentation, segmentation, and classification techniques, is also presented. Standard

evaluation techniques are also reported in this chapter. The methods applicable

to real-world surveillance applications are identified. The review revealed that

detection and identification of the events is commonly treated as a supervised task.

Supervised classification methods applied in the literature (dynamic Bayesian net-

works, hidden Markov models, support vector machines) rely on the training data

of the known events to be provided to the algorithms. Unsupervised approaches

are preferred in identification of unusual events, that are diverse and can be

difficult to define for some environments. Unsupervised approaches are usually

based on clustering methods (k-nearest neighbor, k-means, agglomerative), or

mixture of models (Gaussian mixture model, mixture of Markov random fields,

mixture of hidden Markov models). Abstraction of the events which consist of

event segmentation and event representation depend on the complexity of the

scene. If captured scenes depict mostly empty scenes with only few moving

objects at a time, object detection and tracking techniques are applied. On the

other hand, if the captured scenes depict a crowded environment with an object

moving in an unordered manner, salient regions of interest, rather than objects,

are extracted and described by the properties of the regions such as pixel mo-

tion, edge orientations, grey level intensities, etc. In the literature, supervised

classification techniques combined with the object based event representation

are commonly combined approaches. The review showed that a combination of

the unsupervised classification techniques with the local region descriptors, the
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combination that is applicable to real-world surveillance scenarios, is the area that

requires to be further investigated.

In Chapter 3, experiments are conducted on a combination approaches of

event abstraction and modeling techniques. The techniques are restricted to the

ones applicable in the real-world surveillance scenarios defined in this thesis. An

online clustering algorithm is applied to model the usual scenes in the captured

environment. This approach fulfills two constraints of real-world applications.

First, the clustering approach does not require labelled training data for model

creation as it is relying on the assumption that the usual events dominate the

surveillance video data. A feature of real-world surveillance applications that in-

troduces the second constraint is the continuous streaming of data. The incoming

data has to be continuously integrated into the model. The incremental model

update procedure allows continuous training of the model. It is also preferable

not to rely on object detection techniques. Therefore, a spatio-temporal event rep-

resentation based on motion is implemented to represent overlapping temporal

segments of video data. The unusual event detection routine is tested on the video

data captured in a university corridor. The unusual events that were performed

by volunteers over the period of one week were detected with 88% accuracy.

Most falsely detected unusual events were found to be due to the environmental

conditions such as weather changes. The unusual events that were missed by the

algorithm had insufficient representation with the descriptors used.

In order to identify suitable descriptors for surveillance applications, the

experiments in Chapter 4 were conducted. The list of suitable descriptors is first

narrowed to the local region descriptors that do not depend on object detection,

but have sufficient information to differentiate between events. Based on the

results reported in the literature, the dense trajectory region-of-interest detection

technique is adopted. The region-of-interest descriptors in the experiments were

aggregated for each segment using a bag-of-visual-words approach, which is
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commonly used in the literature yielding good results. The experiments were

performed on surveillance-like benchmark data and a supervised classification

approach. The results showed that the region-of-interest description based on the

boundary motion information is superior to the descriptions based on trajectory

shape, optical flow and edge orientation.

Online and unsupervised unusual event detection approaches are evaluated

on the benchmark surveillance dataset in Chapter 5. The evaluation is carried out

in two steps. First, an unsupervised event detection approach is compared to the

state-of-the-art supervised event detection approach where both of the methods

are based on the batch learning procedure. The second step evaluated the per-

formance of two unsupervised event detection approaches, the online approach

based on incremental learning, and the batch learning approach. The structure of

the experiments allowed for the evaluation of the intermediate results between

state-of-the-art supervised approach and the real-world applicable unsupervised

approach. The results showed that the unsupervised event detection approach has

unusual event detection accuracy 8% lower than the supervised approach. The

online implementation of the unsupervised classification method has accuracy

1% lower than the batch processing based approach. The lower accuracy of both

unsupervised methods is mainly caused by the falsely detected unusual events.

Further investigation into the falsely detected events showed that most of the

false positives were caused by actual deviations from the usual scenarios. The

results are showed to be highly dependent on the thresholding approach applied

to the unusual event probabilities, where an automatic threshold extracted from

the data itself performed better than the threshold that optimized the F1 measure.

The supervised and the online unsupervised event detection approaches were

found to have complementary characteristics. Therefore, the combination of the

two approaches is proposed in Chapter 6. First of all, to evaluate the stability

of the online unsupervised method, the bootstrap technique was applied to the
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training data and the aggregation of the bootstraps is proposed for improvement

of the stability. The variance of the method was shown to be 9%, which might

be an acceptable measure in real-world applications due to the per-segment

rather than per-event evaluation and the average event contains approximately

350 overlapping segments. The variance is shown to decrease to the 2% when

aggregating six bootstrap models, but with six times computational overhead.

The experiments were also carried out to evaluate how the supervised and online

unsupervised methods are affected by increasing amount of training data. The

results showed that the supervised training method benefited from the increasing

amount of training data quicker than the online unsupervised method. On the

other hand, the online unsupervised method has a constant accuracy from the

beginning of the training. Finally, two decision level fusion techniques were

investigated, both showed improvements when detecting known unusual events

comparing to the online unsupervised event detection method applied alone. The

unusual events, that are not part of the ground-truth, but were identified as the

deviations from the usual scenes during the qualitative evaluations, had at least

part of them identified as unusual. The detection is sufficient to set a flag to the

operator in the real-world environment.

7.3 Analysis and discussion of hypotheses

In this thesis, a number of research questions in conjunction with central hy-

potheses are explored to investigate how computer vision and machine learning

techniques can improve the effectiveness of real-world visual surveillance appli-

cations. In this section, the research questions are examined with respect to the

experimental results obtained.

Research question 1
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Could unsupervised classification techniques be applied to unusual event

detection and would it yield comparable results to the state-of-the-art super-

vised classification techniques?

The first part of the question is explored in Chapter 3, where a complete un-

usual event detection system, that conforms to the requirements of real-world

applications, is implemented. An agglomerative clustering (AGG) algorithm

is implemented to learn the usual environment. It is an unsupervised classi-

fication algorithm with the capability to continuously integrate data into the

model. The system is tested on a week of continuous video data captured in

a university corridor outside the laboratories. In the dataset, a number of un-

usual behaviours were performed by volunteers, and the ability to detect those

events is investigated using the proposed pipeline. Results showed that 14 out

of 16 events were correctly identified as unusual. Analysis of the missed events

and the falsely detected events suggested improvements in event representation

where necessary. The second part of the question is investigated in Chapter 5,

where a number of classification methods are investigated and compared. Two

conclusions were drawn from the comparison of the unsupervised classification

approach with the state-of-the-art supervised approach. The first conclusion is

that the unsupervised approach has 8% lower event detection accuracy than the

supervised approach. The lower accuracy is mostly caused by the false positives

- events that were identified as unusual by the system but were not part of the

ground-truth unusual events. The second conclusion is that the two approaches

have complementary properties where unsupervised approach is appropriate for

detecting unknown unusual events while the supervised approach is appropriate

for detecting unusual events that are already known. This observation motivates

further experiments on fusing the two approaches.

Research question 2

166



Event representation is an essential part of the event classification task.

Can space-time visual events be efficiently represented without relying on de-

tection of the moving objects, accuracy of objects’ shape, and their complete

motion trajectory?

In Chapter 4 the representation of visual events is explored. Following the

discussion about what constitutes an event, three essential components of visual

event abstraction techniques are identified. Firstly, the identification of local

regions is required to filter out visual information that is not part of the event.

The second part of the visual event abstraction is the description of individual

local regions that are identified in the previous step. The last part is responsible

for aggregation of the local region descriptors into a single descriptor that repre-

sents the event of interest. Experiments are conducted using five different local

region descriptors to find the most suitable representation for events in real-world

surveillance applications. The local region detection method and aggregation

method (step one and three) are kept static through the experiments. Appropri-

ate representation for visual events in surveillance applications is suggested as

follows:

1. Dense trajectory interest point detector;

2. Motion Boundary Histogram descriptor for each local region;

3. Bag of visual words vector quantization;

4. Event representation using overlapping segments of 15 frames length and 1

frame shift;

Research question 3

Could online training techniques be used as an alternative approach for

training in applications where optimization techniques are not feasible?
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Comparison between online and batch processing is investigated in Chapter

5. A literature review showed that the majority of the supervised classification

methods can be adapted to work online. The trade-offs of integrating online

training rather than batch training are: it is scalable for training with large amounts

of data; predictions can be made from a very early stage of the training phase;

ability to learn continuously which allows the model to be up-to-date for an

extended period of time.

Experiments are conducted to compare two unsupervised modeling approaches,

one based on the online processing and another based on batch processing. The

experimental results showed that 1% of accuracy is sacrificed when using an

online method instead of the batch method for unusual event detection. Similar

results are shown in the literature for state-of-the-art supervised classification

approaches. The final conclusion is that online training can be a good alternative

to the batch training approaches when large datasets, or streaming data is used.

Research question 4

Could a supervised classification method be integrated into the unsuper-

vised system to benefit from the advantages of both techniques?

The final research question is addressed in Chapter 6. Further improvements

to the unsupervised unusual event detection are proposed by fusing the classifica-

tion results of the supervised and unsupervised approaches. Integration of the

unsupervised approach into the decision making is only possible when the events

of interest are known. Information about the events can be made available after

the user confirms the unusual events detected by the unsupervised approach.

User feedback also can be integrated via active learning techniques where the

samples for annotations are chosen based on the amount information they would

give to the classifier. Two decision level fusion methods are proposed, and ex-

periments are conducted to test their event detection capabilities. Both methods

showed improvements to the unusual event detection results when compared to
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the unsupervised method applied alone. The winner-takes-all method showed

results more similar to the unsupervised method, where mainly undefined un-

usual events are detected. The support vector machine approach to fusion of the

classifiers showed similarity to the supervised method, where known unusual

events are detected. With this method, undefined unusual events are also detected

which is the desired outcome of the combined unusual event detection system.

7.4 Future Work

An extensive literature review and the experiments conducted provided a basis

for implementation of a real-world unusual event detection system in surveillance

applications. The proposed solution conforms to requirements of real-world

surveillance applications identified at the beginning of the thesis. However,

several issues remain to be addressed. In addition to these, several research areas

that are related to the unusual event detection but are excluded from the thesis

are considered in this section.

Even though an unusual event detection system has been proposed, and its

components were tested on benchmark surveillance dataset. However, evaluation

of the implemented system would benefit from the application of the system in

real surveillance scenarios where the experienced security officer could provide

feedback. This feedback would be invaluable input for the further research

perspectives in the area. An important part for gathering the feedback from real

surveillance setting is the graphical user interface (GUI). It is a challenging task

to convey event detection information to the user in a simple yet informative

way. An example interface was designed and can be seen in Appendix A. The

proposed GUI contains online and offline mode, with a live camera feed and the

event detection results showed on the side. The interface provides the capability

to manually annotate the detected events which would allow more specific event
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detection results. The GUI is designed for a single video camera, but could

easily be upgraded to contain multiple cameras. The live feed area would have

to be divided into grid in order to accommodate multiple video feeds. The

events detected from all the cameras would have to be placed into a single list

and ordered by time of event occurrence. A filter for the events also could be

integrated globally or per camera to reduce the amount of events.

Events represented by video sensor data are limited to the visual clues. Im-

proved event representation might be achieved by integrating a vision based sys-

tem with other modalities, such as an audio signal. Kumar et al. (2005) combined

audio information with the video descriptors to describe events. Integrating dif-

ferent modalities, such as temperature, motion, inertia, was suggested by Turaga

et al. (2008). Ho et al. (2012) also mentioned integration of different modalities

such as thermal, infrared, audio and pressure.

Relevance feedback is frequently applied in image retrieval to adapt to the

user’s information needs and to reduce the effort required for query composition

(Rui et al., 1998). similarly, an active learning approach can be used as an alterna-

tive to the intensive manual labeling. Several active learning schemes have been

proposed in the literature to accelerate the learning process. The most informative

samples are selected from the unlabeled sample pool according to certain criteria

and the users are requested to label them. Most of the active learning methods

empirically apply the closest-to-boundary criterion and choose the most uncertain

samples for user annotations (Campbell et al., 2000). The supervised classifier can

be updated with the newly labeled samples and this is an approach that should

be investigated in the future.
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7.5 Summary

This chapter summarized the thesis, provided interpretation for the overall results

and suggestions for future work. Starting with an overview of the results chapter

by chapter, each chapter is briefly overviewed and the research questions, raised at

the start of the thesis, are revisited. The chapter is concluded with the suggestions

for the future work in this research area.

171



Appendix A

Graphical User Interface

The graphical user interface (GUI) was designed with the help of Dr. Hoywon

Lee who is an expert in human-computer interaction. The GUI encapsulates

the following functionalities - the live event detection (Figure A.1 - A.4) and

the off-line search and management of the events (Figure A.5 - A.6). In the line

event detection view, the live video feed is shown in the center, while the list of

sequential events, both usual and unusual, are listed on the right panel (Figure

A.2). A clickable timeline with marked unusual events is displayed on the top of

the window. The Right side panel menu has an option to switch between listing

all events, listing only unusual events, and listing only events that have been

annotated by the user. When the option to view only unusual events is selected

(Figure A.3), only the unusual events, marked by the system or the user, are listed

at the right side panel. The events can be labeled by clicking on them, where the

menu would pop-up with the list of available events. The options are to mark the

event as usual, to give one of the labels from the list or to create a new label for

the event (Figure A.4).

In the off-line mode, the GUI provides a functionality of event retrieval by

the date, time or event type (Figure A.5). The labels of the events can also be set
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in the off-line mode. The video of the selected event can be played, paused and

rewound in the main window (Figure A.6).

Figure A.1: Graphical user interface of the live unusual event detection system
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Figure A.2: Menu explanation of the live unusual event detection system GUI
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Figure A.3: Unusual events in the live unusual event detection system GUI
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Figure A.4: Changing event annotation in the live unusual event detection system
GUI
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Figure A.5: Off-line search in the off-line unusual event detection system GUI
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Figure A.6: Off-line search in the off-line unusual event detection system GUI
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Stöttinger, J., Goras, B., Pöntiz, T., Hanbury, A., Sebe, N., and Gevers, T. (2011). Sys-

tematic evaluation of spatio-temporal features on comparative video challenges.

ACCV Workshop, pages 349–358.

Sudo, K., Osawa, T., Tanaka, H., Koike, H., and Arakawa, K. (2008). Online

anomal movement detection based on unsupervised incremental learning. In

9th International Conference on Pattern Recognition (ICPR), pages 1–4. Ieee.

Sun, Z., Bebis, G., and Miller, R. (2006). On-road vehicle detection: a review. IEEE

transactions on pattern analysis and machine intelligence, 28(5):694–711.

Syed, N., Huan, S., Kah, L., and Sung, K. (1999a). Incremental learning with

support vector machines. In International Joint Conference on Artificial Intelligence

(IJCAI), pages 1–6.

Syed, N. A., Liu, H., and Sung, K. K. (1999b). Handling concept drifts in incremen-

tal learning with support vector machines. In 5th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 317–321, New York,

New York, USA. ACM Press.

197



SYNAXIS (2014). http://www.synaxissecurity.com/products/video-

management-surveillance-systems/truesentry-intelligent-ip-video-

surveillance-system/. [Accessed 08/06/2014].

TRECVID (2007). http://trecvid.nist.gov/trecvid.data.html. [Accessed 08/06/2014].

Turaga, P., Chellappa, R., Subrahmanian, V. S., and Udrea, O. (2008). Machine

Recognition of Human Activities: A Survey. IEEE Transactions on Circuits and

Systems for Video Technology, 18(11):1473–1488.

UCSD (2010). http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm. [Ac-

cessed 08/06/2014].

U.K. Home Office (2011). https://www.gov.uk/imagery-library-for-intelligent-

detection-systems. [Accessed 28/06/2014].

Umakanthan, S., Denman, S., Sridharan, S., Fookes, C., and Wark, T. (2012). Spatio

Temporal Feature Evaluation for Action Recognition. In International Conference

on Digital Image Computing Techniques and Applications (DICTA), pages 1–8. Ieee.

Valera, M. and Velastin, S. (2005). Intelligent distributed surveillance systems: a

review. Vision, Image and Signal Processing, 152(2):192–204.

Velastin, S. A., Boghossian, B. A., Ping, B., Lo, L., Sun, J., and Vicencio-Silva,

M. A. (2005). PRISMATICA : Toward Ambient Intelligence in Public Transport

Environments. Systems, Man, and Cybernetics - Part A: Systems and Humans,

35(1):164–182.

Verint (2014). http://www.verint.com/solutions/video-situation-

intelligence/products/surveillance-analytics/index. [Accessed 08/06/2014].

VideoIQ (2014). http://www.videoiq.com/. [Accessed 15/06/2014].

198



Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade

of simple features. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, volume 1, pages 511–518.

Wang, H., Klaser, A., Schmid, C., and Liu, C.-l. (2011). Action recognition by

dense trajectories. In IEEE Conference on Computer Vision & Pattern Recognition

(CVPR), number June, pages 3169–3176.
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