22 research outputs found

    DPC-Net: Deep Pose Correction for Visual Localization

    Full text link
    We present a novel method to fuse the power of deep networks with the computational efficiency of geometric and probabilistic localization algorithms. In contrast to other methods that completely replace a classical visual estimator with a deep network, we propose an approach that uses a convolutional neural network to learn difficult-to-model corrections to the estimator from ground-truth training data. To this end, we derive a novel loss function for learning SE(3) corrections based on a matrix Lie groups approach, with a natural formulation for balancing translation and rotation errors. We use this loss to train a Deep Pose Correction network (DPC-Net) that predicts corrections for a particular estimator, sensor and environment. Using the KITTI odometry dataset, we demonstrate significant improvements to the accuracy of a computationally-efficient sparse stereo visual odometry pipeline, that render it as accurate as a modern computationally-intensive dense estimator. Further, we show how DPC-Net can be used to mitigate the effect of poorly calibrated lens distortion parameters.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'18), Brisbane, Australia, May 21-25, 201

    Learning monocular visual odometry with dense 3D mapping from dense 3D flow

    Get PDF
    This paper introduces a fully deep learning approach to monocular SLAM, which can perform simultaneous localization using a neural network for learning visual odometry (L-VO) and dense 3D mapping. Dense 2D flow and a depth image are generated from monocular images by sub-networks, which are then used by a 3D flow associated layer in the L-VO network to generate dense 3D flow. Given this 3D flow, the dual-stream L-VO network can then predict the 6DOF relative pose and furthermore reconstruct the vehicle trajectory. In order to learn the correlation between motion directions, the Bivariate Gaussian modelling is employed in the loss function. The L-VO network achieves an overall performance of 2.68% for average translational error and 0.0143 deg/m for average rotational error on the KITTI odometry benchmark. Moreover, the learned depth is fully leveraged to generate a dense 3D map. As a result, an entire visual SLAM system, that is, learning monocular odometry combined with dense 3D mapping, is achieved.Comment: International Conference on Intelligent Robots and Systems(IROS 2018

    Towards Visual Ego-motion Learning in Robots

    Full text link
    Many model-based Visual Odometry (VO) algorithms have been proposed in the past decade, often restricted to the type of camera optics, or the underlying motion manifold observed. We envision robots to be able to learn and perform these tasks, in a minimally supervised setting, as they gain more experience. To this end, we propose a fully trainable solution to visual ego-motion estimation for varied camera optics. We propose a visual ego-motion learning architecture that maps observed optical flow vectors to an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architecture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective reasoning and prediction for ego-motion induced scene-flow. Additionally, our proposed model is especially amenable to bootstrapped ego-motion learning in robots where the supervision in ego-motion estimation for a particular camera sensor can be obtained from standard navigation-based sensor fusion strategies (GPS/INS and wheel-odometry fusion). Through experiments, we show the utility of our proposed approach in enabling the concept of self-supervised learning for visual ego-motion estimation in autonomous robots.Comment: Conference paper; Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017, Vancouver CA; 8 pages, 8 figures, 2 table

    Non-iterative RGB-D-inertial Odometry

    Full text link
    This paper presents a non-iterative solution to RGB-D-inertial odometry system. Traditional odometry methods resort to iterative algorithms which are usually computationally expensive or require well-designed initialization. To overcome this problem, this paper proposes to combine a non-iterative front-end (odometry) with an iterative back-end (loop closure) for the RGB-D-inertial SLAM system. The main contribution lies in the novel non-iterative front-end, which leverages on inertial fusion and kernel cross-correlators (KCC) to match point clouds in frequency domain. Dominated by the fast Fourier transform (FFT), our method is only of complexity O(nlogn)\mathcal{O}(n\log{n}), where nn is the number of points. Map fusion is conducted by element-wise operations, so that both time and space complexity are further reduced. Extensive experiments show that, due to the lightweight of the proposed front-end, the framework is able to run at a much faster speed yet still with comparable accuracy with the state-of-the-arts
    corecore