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Learning monocular visual odometry with dense 3D mapping
from dense 3D flow

Cheng Zhao', Li Sun?, Pulak Purkait®, Tom Duckett? and Rustam Stolkin'

Abstract— This paper introduces a fully deep learning ap-
proach to monocular SLAM, which can perform simultaneous
localization using a neural network for learning visual odometry
(L-VO) and dense 3D mapping. Dense 2D flow and a depth
image are generated from monocular images by sub-networks,
which are then used by a 3D flow associated layer in the L-VO
network to generate dense 3D flow. Given this 3D flow, the dual-
stream L-VO network can then predict the 6DOF relative pose
and furthermore reconstruct the vehicle trajectory. In order to
learn the correlation between motion directions, the Bivariate
Gaussian modeling is employed in the loss function. The L-VO
network achieves an overall performance of 2.68% for average
translational error and 0.0143° /m for average rotational error
on the KITTI odometry benchmark. Moreover, the learned
depth is leveraged to generate a dense 3D map. As a result,
an entire visual SLAM system, that is, learning monocular
odometry combined with dense 3D mapping, is achieved.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is an
essential technique for mobile robot applications. In the past
few decades, a substantial amount of research has been de-
voted to visual SLAM systems that enable robots to localize
robustly and accurately in different environments. One of the
most challenging branches of visual SLAM is monocular
SLAM, which often suffers critically from absolute scale
drift. Usually, some prior knowledge such as the height of
the camera is necessary to alleviate scale drift. Moreover,
these methods require hand-coded engineering efforts and
excellent parameter tuning skills.

In recent years, deep learning techniques for visual odom-
etry and SLAM have attracted considerable attention in the
SLAM community. These methods not only provide good
performance in challenging environments but also rectify the
incorrect scale estimation of monocular SLAM. Supervised
learning approaches formulate visual odometry (VO) as a
regression problem. They explore the ability of CNN [1]
or RNN [2][3] to learn ego-motion estimation using the
change of RGB value features [4], deep flow [S] and non-
deep flow [6] features. These methods are calibration-free
but require a lot of expensive ground truth data for training.

On the other hand, some networks for predicting VO
take advantage of geometric constraints, e.g. similarity con-
straints, epipolar constraints, etc., by integrating them into
the loss function and training the network in an unsupervised
manner. Although the trajectory ground truth is not required
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Fig. 1: The pipeline of the proposed learning monocular
SLAM system. More detail can be found in Sec. III-A.

for these methods, consecutive frames [7][8][9] or stereo
image pairs [10] along with the above geometric constraints
are enough to provide sufficient supervision to train the net-
work. However, these methods usually require the intrinsic
parameters of the camera.

The main limitation of the above methods is that they all
suffer from high dataset bias and require domain similar-
ity between the training and testing sequences. Moreover,
most of the deep learning geometry research only focus
on visual odometry for localization without mapping. CNN-
SLAM [11] is the forerunner to integrate learning of depth
prediction with monocular SLAM to generate an accurate
dense 3D map. But the odometry in CNN-SLAM is still
based on the conventional method. Therefore, it is still not
a pure deep learning SLAM method. In addition, some
researches [12][13][14][15] integrate deep semantic informa-
tion into a conventional SLAM system.

In this paper, a learning system for monocular SLAM is
developed, which can simultaneously perform localization
and dense 3D mapping through an end-to-end neural net-
work. A learning visual odometry (L-VO) network with a
3D association layer is proposed for ego-motion estimation,



which achieves an overall performance of 2.68% for average
translational error and 0.0143° /m for average rotational er-
ror on the KITTI' odometry benchmark. The main contribu-
tions can be briefly summarized as follows: i) A new baseline
L-VO method with a 3D association layer is proposed for
ego-motion estimation, ii) a Bivariate Gaussian loss function
is used to learn the correlation between motion directions,
iii) L-VO is extended to a learning monocular SLAM system.
An overview of the proposed architecture is shown in Fig. 1.

II. RELATED WORK
A. Learning based visual odometry (Pre-deep learning era)

In the recent past, some learning-based visual odometry
estimation methods [16][17][18][19][20] were explored, be-
fore deep learning began to dominate many computer vision
and robotics tasks. These learning-based methods mainly
explored different pre-deep learning methods such as SVM,
Gaussian Processes, etc. using sparse optical flow features
for camera localisation and motion estimation.

B. Supervised deep learning for visual odometry

One of the pioneering works on deep learning for visual
odometry estimation was proposed by Costante et al. [6].
They employed convolutional neural networks (CNNs) for
ego-motion estimation from dense optical flow obtained by
a non-deep method [21]. Then, Muller et al. [5] proposed
Flowdometry, which combines FlowNet [22] and CNNs to
obtain an end-to-end odometry system. Gabriele et al. [1]
proposed Latent Space Visual Odometry (LS-VO) to find a
non-linear representation of the optical flow manifold.

Tuomas et al. [4] explored LSTM for visual odometry.
They utilized CNNs on the temporal change of RGB values
(temporal derivatives) between two adjacent images. They
utilized LSTM as a baseline in their work and proposed
a back-propagation method for a Kalman Filter to learn
the discriminative deterministic state estimators. Another
seminal work on learning visual odometry was proposed by
Wang et al. [2][23]. They utilized FlowNet features with
LSTM for an end-to-end visual odometry system. Clark ez.
al [3] used the same network but fused the features of
the monocular RGB camera with additional IMU readings
for improved performance. Mehmet et al. [24] adopted a
similar architecture — CNNs with LSTM - to develop a visual
odometry system for endoscopic capsule robots.

C. Unsupervised deep learning for visual odometry

Most of the unsupervised visual odometry estimation
methods predict the depth and ego-motion simultaneously.
These methods do not require the trajectory ground truth
but need camera parameters and often some additional in-
formation such as stereo images for training. Benjamin et
al. [8] proposed the DeMoN architecture, which estimates
not only depth and motion but also the surface normals
and optical flow from a pair of images. They employed
an unsupervised training loss function based on the relative
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spatial differences. Zhou et al. [7] also used a training
loss function which minimizes image warping error of an
image sequence for unsupervised depth prediction and ego-
motion estimation. SfM-Net [9] predicts depth, segmentation,
camera and rigid object motions, and transforms these to
obtain frame-to-frame dense optical flow. Li er al. [10]
combined the loss functions from [7] and [25] to obtain an
unsupervised visual odometry method that can recover the
absolute scale.

D. Learning visual SLAM

Most of the deep learning geometry research only focuses
on VO for localization without mapping. The only forerunner
of deep learning SLAM, CNN-SLAM [11], integrates CNN-
style depth prediction with monocular SLAM to recover the
absolute scale, and meanwhile generates a dense 3D map.
However the odometry in CNN-SLAM is still based on the
conventional method. As the estimated odometry of CNN-
SLAM is not based on learning methods, it is not a complete
end-to-end approach for learning SLAM.

E. Discussion

Conventional monocular visual odometry suffers from
scale drift. Pioneering researchers [S][23][3][1] show that
this problem can be mitigated via learning from 2D flow
features. Inspired by RGBD-SLAM, the relative transform
can be estimated directly from solving the PnP problem
when the depth is given. In this paper, we model the visual
odometry problem as a probabilistic regression problem.
Multi-modal features, i.e. 3D flow (derived from the 2D
flow and depth flow), are used to enhance the observation
of the learning visual odometry. We further explore the
correlation of motion directions and learn the translation with
a multi-variate Gaussian rather than isotropic Gaussian [2].
Moreover, the learned depth is leveraged to generate a dense
3D map. As a result, an entire visual SLAM system, that
is, learning monocular odometry combined with dense 3D
mapping, is achieved.

III. METHODOLOGY
A. Overview

The pipeline of the proposed learning monocular SLAM
is shown in Fig. 1. The proposed L-VO network is an end-
to-end neural network for simultaneous monocular visual
odometry and dense 3D mapping. To be more specific, L-VO
Net takes a pair of consecutive images as input and predicts
Ego-motion. The dense 2D flow and depth are obtained
with FlowNet2 [26] and DepthNet [25] respectively. The
estimated dense 2D flow and depth are further associated to
obtain the 3D flow. Next, the 3D flow is fed into two separate
regressors to predict the 6DOF relative pose (including scale)
transform between each pair of images. As a consequence,
the 6DOF camera trajectory can be obtained by accumulating
relative poses. The point cloud is simultaneously gener-
ated and mapped incrementally from the given RGB image
and the estimated depth. Furthermore, a 3D refinement is
employed to remove the outliers and incorrect predictions.
Finally, a dense 3D map is generated.
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Fig. 2: The architecture of the proposed learning visual odometry (L-VO) network.

B. 2D optical flow and depth prediction

For dense 2D optical flow prediction, the state-of-the-
art approach FlowNet2 [26] is employed. FlowNet2 is a
stacked architecture composed of a series of FlowNet-S [22],
FlowNet-C [22] and FlowNet-SD [26]. It can deliver robust
2D dense optical flow, which is of significant importance
for learning odometry. We fine-tune this network using
the training KITTI data (as described in IV-C) and then
transplant the network for our task.

For depth prediction, any of the state-of-the-art meth-
ods [8], [7] and [25] can be adapted to our approach. In this
paper, [25] is employed because of its good performance
in outdoor scenes. [25] is an encoder-decoder architecture
with appearance matching loss, disparity smoothness loss
and left-right disparity consistency loss, which can be trained
in unsupervised fashion. The training objective enables the
network to perform the depth estimation from a monocular
image. The network is also fine-tuned using the training
KITTI data (as described in IV-C).

C. 3D flow association layer

We propose a 3D flow association layer which generates
dense 3D flow from 2D flow and the corresponding depth
maps. Assuming FaE+h € RP*wX2 i the predicted dense
2D flow (on X-Y image plane) between frame k£ and %k + 1,
and D* € R"*% g the predicted depth map of frame k, the
3D flow association layer can be defined as:

FE*(,y) = DV ((w,y) + FRE (@,9)) — D¥(a,)
ey

Fyp ™t = C(Py ™ Byt @)

where Fyi¥ ! (z,y) € R® refers to the 3D flow at pixel
coordinate (z,y) and C is the concatenation operation. If
the depth value in frame £+ 1 cannot be associated with the
corresponding depth value in frame k, the missing flow pixels
between two adjacent frames can be interpolated through
bilinear filtering. It is worth noting that the inverse depth
(i.e. disparity) is more sensitive to the motion of surroundings
and objects close to the camera. Hence, the inverse depth is
used instead of the depth value in our approach. We still use

the term “depth” in order to make the following description
more readable.

D. Learning odometry

As shown in Fig. 2, our learning odometry network is a
dual stream architecture network, composed of two branches
of convolution stacks followed by a squeeze layer [27] and
two fully connected regressors. The convolution layers are
composed of 3 x 3 filters and are of stride 2. The numbers
of channels in the two branches are 64, 128, 256 and 512. In
order to keep the spatial geometry information, the pooling
layer is abandoned in these two CNN stacks. In the end, the
feature maps of the two branches are concatenated together
and squeezed using a 1 x 1 filter:

Fsp =S(Fxy,Fz) 3)

where S is the squeeze operation, Fxy € R"*X®X" and
Fz € RPXwXn are the feature maps of 2D flow and depth
flow respectively, Fyp € R"*®w*"/4 is the squeezed feature,
and n is the number of feature channels. The squeeze layer
embeds the 3D feature map into a lower dimensional space,
thereby reducing the input dimension of the regressors. A
triple-layer fully-connected network is used for regression.
We set the hidden layers of the regressors to size 128
with relu activation function. The output of the translation
regressor is 6 for bivariate Gaussian loss and that of the
rotation regressor is 3, which is trained through a /5 loss.
The details of the loss function are described as follows.

E. Bivariate Gaussian loss function

For most of the outdoor on-road driving data, e.g. KITTI
dataset, there is a strong correlation between the translations
along different axes in the horizontal plane. In contrast with
the previous loss functions used in learning odometry, we aim
to let our network learn the correlation along the forward and
left/right translation directions. In this paper, this correlation
is modeled as a multivariate Gaussian distribution.

The same camera configuration (axes definitions) as in the
KITTI dataset is used, i.e. « : right (horizontal), y : down
(vertical), z : forward (horizontal), then the translation varia-
tion along y coordinate is small compared to the other axes.
Therefore, we only need to find the correlations between



translation x and translation z. In our approach, the Bivari-
ate Gaussian Probabilistic-Density-Function (PDF') [28] is
employed as the likelihood function for = (left/right) and
z (forward) translation prediction. For the translation in y
direction and orientations, {5 loss is used for optimization.
Similar to [29], the Euler angles rather than quaternion
are used to represent the orientation, as the quaternion
representation opens up the possibility of over-fitting in the
rotation regression. We further include a /o regularization
term for all weights to mitigate over-fitting. Our loss function
is defined as:

N
ZOSS = Z IOg (PDF(( gt7 gt) '/V'l(:uﬂ E))
N 2 N (4)

AMD Nl = yhellz + X2 > lIrh —

i i

rhill2 + As|[W ]l

where N is the number of training pair images, (x° gt, ygt7 gf)
is the ground truth camera translation, and (z},,y,, ;) is
the predicted translation of the ith [image/camera. 1, =
(ep,€¥,er) and i, = (e, ey, eb;)" are the predlcted and
ground-truth Euler angles, respectively. W are the trainable
weights of the neural network. A1, Ay and A3 are the scale
factors to balance the weights of translation and orientations.

The Gaussian Density Function PDF' is defined as:

PDF( gt7 gt (ILL,E)) =
exp(— %(('rgﬁzgt) M)E_l((ﬂﬁénzét)—M)T) )
((2m)2|x])~1/2

where the bivariate Gaussian distribution N is:

0320 PO20~ )l (6)
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where p, and p, are two mean variables in the left/right
and forward direction, o,,0, are the corresponding stan-
dard deviations and p is the correlation coefficient of the
translation between left/right and forward direction in the
horizontal plane. Our neural network is expected to learn
(B, pozy 025 0, Py Yp), and (5, ed, e), corresponding to the
6-dimensional and 3-dimensional outputs of two regression
neural networks.

Once the network is trained, i.e. the translation
(fha» o2y Oz, 0, p,yp) and rotation (e, e¥, er) can be esti-
mated from the network, the predicted translation in the
horizontal plane is obtained through sampling within the bi-
variant Gaussian distribution using:

N
Np (1, %), (7

xédzé
Ns k

where N, is obtained from (puy, fiz, 04,05, p), (s, 25)" is
the kth sample, and NN, is the number of samples.
FE. Octree depth fusion for mapping

We also proposed a dense 3D mapping method using the
learned odometry and depth. Given the RGB image and the

corresponding predicted depth image, the 3D point cloud
(X,Y, Z) can be obtained through:

U fz 8 Cy X
duo [v] =10 fycy Y 8)
1 001 Z

where f5, f, are the focal lengths, (c,c,) is the principal
point offset and s is the axis skew. (u, v) is the pixel position
in the image plane.

Unfortunately, the depth prediction usually suffers from
blur around the depth borders. The predicted depth is not
accurate enough to be utilized directly for 3D mapping. In
our approach, the OctoMap representation [30] is used to
refine and maintain the 3D map. In order to build a robust,
accurate dense 3D map, depth fusion using measurements
from multiple views is employed. In OctoMap, each leaf
node n stores the occupancy probability P(n|o;.¢). Given
the 3D point measurements o;.;, the probability P(n|o;.+)
can be updated as:

P(n) 17
1—P(n)

P(n|ot) 1- P(
P(nfot)

n[o1:4-1)

1
Plnlov) = |1+ P(nlo1-1)

©)
here, P(n|o;) can be obtained by a beam tracing sensor
model. If the probability P(n|o;.;) of the leaf node is beyond
a threshold, this node will be marked as occupied in the dense
3D map. This probabilistic occupancy fusion can fuse the
depth estimations from multiple views, and remove points
arising from inaccurate depth predictions.

IV. EXPERIMENTS
A. Dataset

The proposed L-VO Net is evaluated on the most pop-
ular KITTI VO/SLAM benchmark. The KITTI VO/SLAM
benchmark consists of 22 sequences saved in PNG format.
Sequences 00 — 10 provide the sensor data with the accurate
ground truth (< 10cm) from a GPS/IMU system, while
sequences 11 — 21 only provide the raw sensor data. The
large number of dynamic objects such as cars means that
visual odometry could easily fail on this challenging dataset.

B. Network training and testing

The network is trained with Adam optimization. The batch
size is set to 100, the momentum is fixed to (0.9,0.999), and
the starting learning rate is 0.0001. The step learning policy
is adopted and the learning rate decay is set to 0.95. The
network is trained by 100 epochs. In order to reduce the GPU
memory requirement and training time, the raw images from
the KITTI dataset are down-sampled 4 times to 320 x 96. But
using this small image size for training can definitely degrade
the performance. The whole network is end-to-end trainable.
Considering the GPU limitation, training the network step-
by-step is more practicable. The pre-trained model (without
training on KITTT dataset) from [26] and [25] is adapted and
then fine-tuned using the training KITTI data (as described in
IV-C). In order to enhance the performance and avoid over-
fitting, both geometric augmentation (translation, rotation,
scaling) and image augmentation (color, brightness, gamma)
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Fig. 3: The predicted trajectories of the proposed L-VO Net on Sequences 03, 04, 05, 06, 07 and 10. The network is trained

on Sequence 00, 02, 08 and 09.

TABLE I: The comparison of the performance of L-VO against the baselines on the KITTI dataset according to the evaluation
method [2]. Note that VISO-S is a stereo VO and the other methods are monocular VO. The L-VO model is trained on the

sequences 00, 02, 08 and 09, and evaluated on the rest.

VISO-S[31] VISO-M[31] ESP-VO[2] L-VO(2D Flow) L-VO(@3D Flow)
Seq. | (1242 x 376) (1242 x 376) (1242 x 376) (320 x 92) (320 x 92)
trel(%) rrel(o) trel(%) rrel(o) trel(%) Trel(o) trel (%) Trel (O) trel(%) Trel(o)
03 1.71 1.12 9.02 2.83 6.72 6.46 3.35 1.62 3.18 1.31
04 1.54 0.84 4.33 1.63 6.33 6.08 4.15 2.53 2.04 0.81
05 2.36 1.20 19.16 3.62 3.35 4.93 2.49 1.19 2.59 0.99
06 1.47 0.87 6.64 1.96 7.24 7.29 3.19 1.54 1.39 0.95
07 2.37 1.78 26.54 5.92 3.52 5.02 17.2 10.4 2.81 2.54
10 1.51 1.15 48.29 343 9.77 10.2 7.24 3.06 4.38 3.12
Mean | 1.83 1.16 19.00 3.23 6.15 6.66 6.27 3.39 2.73 1.62

trer and 7, are average translational RMSE(%) and rotational RMSE(°/100m) over 100m — 800m intervals.

are employed. As mentioned in [22][25] and [2], we also
observe that these data augmentation techniques are crucial
to improve the 2D flow estimation, depth prediction, and
especially VO prediction, because of the limited number of
training examples. During testing, the number of Gaussian
samples is set to 10000.

C. Visual odometry performance

We perform two kinds of evaluation for the proposed
methods. The first evaluation is based on sequence 00 — 10.
Both the qualitative and quantitative results are reported for

analysis. For fair comparison, we follow the same partition
proposed by [23][2] and split the sequences 00-10 to 00, 02,
08, 09 for training and 03, 04, 05, 06, 07, 10 for testing.
The second evaluation is based on sequence 00-21. The
sequence 00-10 is employed for training and sequence 11-21
for testing. Only the qualitative results are provided because
the ground truth of sequence 11-21 are not provided. The
open-source visual odometry library VISO2 [31] is employed
as the baseline method. It provides both monocular visual
odometry and stereo odometry. For monocular VO, the fixed
height (1.7) and pitch (-0.03) are employed in order to
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Fig. 5: Sample image, 2D flow and depth flow (from top to
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fast moving objects. This sequence is a very long distance
scenario with many dynamic objects.

recover the absolute scale.

We evaluate the learning odometry using the KITTI VO
evaluation metrics, computing the average translational and
rotational RMSE for all possible sub-sequences of length
(100,...,800) meters. Note that the same evaluation metric
was employed in [2].

For the first evaluation, the overall performance of av-
erage translational and rotational errors of L-VO based on
2D flow and 3D flow can reach 4.71%,0.0241°/m and
2.68%,0.0143° /m, respectively, using the standard KITTI
evaluation metrics. The detailed comparison of performances
(some entries are copied from [2]) is shown in Table I. It is
clear that the performance of both L-VO (2D) and L-VO

(3D) is much better than conventional monocular VO. L-VO
(3D) performs slightly worse than conventional stereo VO.
This can also be seen in the predicted trajectory Fig. 3. Most
of the time, the average drift distances of the red line (L-VO
3D) and green one (L-VO 2D) are between that of the light
blue line (stereo VO) and dark blue line (monocular VO).
The red line is much closer to the light blue line.

The main limitation of monocular VO and SLAM is the
absolute scale estimation. However, with a deep learning
method, the scale can be estimated more accurately without
any scene-based geometric constraints such as camera height.
This is one of the main reasons why the proposed L-VO(2D)
and L-VO(3D) outperform the conventional monocular VO.

As we formulate VO prediction as a regression problem,
multi-modal features can enhance the prediction. That is the
reason why the result of L-VO(3D) is better than L-VO(2D)
and closer to the performance of stereo VO. Another reason
why L-VO(3D) can be close to stereo VO is that the (x, z)
constraint in the Bivariate Gaussian loss function can learn
the translation correlation between the left/right and forward
direction. This learned constraint can make the trajectory
more accurate — see, for example, the straight line in Fig. 3(b)
and corner in Fig. 3(c).

For low-speed scenarios, the magnitude of 2D flow is
insignificant and thus provides a weak feature response to
the network, while the magnitude of the depth flow is
still quite strong even in a low-speed situation. Thus, the
depth flow feature is a good complement to 2D flow in
low-speed situations, which is further observed in Fig. 4(c)
and Fig. 4(d). Moreover, because the training data is only
provided by 4 sequences, multi-modal features, i.e., 3D flow
can enhance the robustness of 6DOF relative pose regression.

For the second evaluation, the L-VO network is trained
using more data, i.e. sequence 00-10. Due to the lack of
ground truth, only qualitative results are shown in Fig. 6. It
can be seen that the L-VO network can also give a high-
quality prediction in the new scenarios. Both L-VO(2D) and
L-VO(@3D) outperform monocular VO thanks to better scale
estimation. The trajectory of L-VO(3D) is closer to stereo VO
than L-VO(2D). However, the performance of L-VO(2D) is
boosted more than L-VO(3D) by using more training data.

During testing, we observe that L-VO cannot give a similar
prediction to stereo VO for sequence 21 (Fig. 6(i)). This
sequence is very challenging as it is captured over a long
distance in a high-speed scenario (up to 80km/h). The main
difficulty L-VO encounters is the high number of moving
objects such as fast-moving cars in this street. As displayed
in Fig. 5, the main flow feature is extracted from the fast-
moving cars. Therefore, the main challenge for flow-based
learning VO is to remove the effects of dynamic objects.

D. Dense 3D mapping

A learning monocular SLAM system integrated with L-
VO@3D) is deployed in this paper. The whole system is
implemented under ROS and the neural network is imple-
mented using Tensorflow trained on an NVIDIA Titan GPU.
Compared to LSD and ORB monocular SLAM, our system
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Fig. 6: The predicted trajectories of proposed L-VO Net on Sequence 11, 12, 14, 15, 17, 18, 19, 20 and 21 (There are no
ground truth available for these sequences). The L-VO model used is trained on Sequence from 00 to 10.

can generate a significantly denser 3D map. In order to
alleviate the border blur and wrong prediction of depth, depth
fusion from multiple frames is employed during mapping. In
order to reduce the hardware resource requirement, OctoMap
is used for the map representation instead of the point cloud.
Given the dense refinement of depth information, a dense 3D
map can be generated online. In Fig. 7, the center image is
the dense 3D map of the sequence 07 in the KITTI dataset
and the small images in the surrounding show enlarged local
areas of the global map. It can be seen that after depth fusion,
sharply defined shapes such as the car, trees and building are
obtained. Moreover, a lot of outliers and noise are removed
to make the map cleaner.

V. CONCLUSION

In this paper, a learning system for monocular SLAM is
proposed, which can deploy simultaneous localization using

a L-VO neural network and the dense 3D mapping. Its per-
formance exceeds most of the monocular SLAM approaches
and is even comparable with some stereo SLAM approaches.
Compared with conventional SLAM, its main limitations are
the high computational requirements and high dataset bias.
A demo can be found on the first author’s Youtube channel?.
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