7 research outputs found

    Efficient quadrature rules for subdivision surfaces in isogeometric analysis

    Get PDF
    We introduce a new approach to numerical quadrature on geometries defined by subdivision surfaces based on quad meshes in the context of isogeometric analysis. Starting with a sparse control mesh, the subdivision process generates a sequence of finer and finer quad meshes that in the limit defines a smooth subdivision surface, which can be of any manifold topology. Traditional approaches to quadrature on such surfaces rely on per-quad integration, which is inefficient and typically also inaccurate near vertices where other than four quads meet. Instead, we explore the space of possible groupings of quads and identify the optimal macro-quads in terms of the number of quadrature points needed. We show that macro-quads consisting of quads from one or several consecutive levels of subdivision considerably reduce the cost of numerical integration. Our rules possess a tensor product structure and the underlying univariate rules are Gaussian, i.e., they require the minimum possible number of integration points in both univariate directions. The optimal quad groupings differ depending on the particular application. For instance, computing surface areas, volumes, or solving the Laplace problem lead to different spline spaces with specific structures in terms of degree and continuity. We show that in most cases the optimal groupings are quad-strips consisting of (1×n)(1\times n) quads, while in some cases a special macro-quad spanning more than one subdivision level offers the most economical integration. Additionally, we extend existing results on exact integration of subdivision splines. This allows us to validate our approach by computing surface areas and volumes with known exact values. We demonstrate on several examples that our quadratures use fewer quadrature points than traditional quadratures. We illustrate our approach to subdivision spline quadrature on the well-known Catmull-Clark scheme based on bicubic splines, but our ideas apply also to subdivision schemes of arbitrary bidegree, including non-uniform and hierarchical variants. Specifically, we address the problems of computing areas and volumes of Catmull-Clark subdivision surfaces, as well as solving the Laplace and Poisson PDEs defined over planar unstructured quadrilateral meshes in the context of isogeometric analysis

    The surrogate matrix methodology: Low-cost assembly for isogeometric analysis

    Get PDF
    A new methodology in isogeometric analysis (IGA) is presented. This methodology delivers low-cost variable-scale approximations (surrogates) of the matrices which IGA conventionally requires to be computed from element-scale quadrature formulas. To generate surrogate matrices, quadrature must only be performed on certain elements in the computational domain. This, in turn, determines only a subset of the entries in the final matrix.The remaining matrix entries are computed by a simple B-spline interpolation procedure. Poisson’s equation, membrane vibration, plate bending, and Stokes’ flow problems are studied. In these problems, the use of surrogate matrices has a negligible impact on solution accuracy. Because only a small fraction of the original quadrature must be performed, we are able to report beyond a fifty-fold reduction in overall assembly time in the same software. The capacity for even further speed-ups is clearly demonstrated. The implementation used here was achieved by a small number of modifications to the open-source IGA software library GeoPDEs. Similar modifications could be made to other present-day software libraries

    Exploring Matrix Generation Strategies in Isogeometric Analysis

    No full text
    Abstract. An important step in simulation via isogeometric analysis (IGA) is the assembly step, where the coefficients of the final linear system are generated. Typically, these coefficients are integrals of products of shape functions and their derivatives. Similarly to the finite element analysis (FEA), the standard choice for integral evaluation in IGA is Gaussian quadrature. Recent developments propose different quadrature rules, that reduce the number of quadrature points and weights used. We experiment with the existing methods for matrix generation. Furthermore we propose a new, quadrature-free approach, based on interpolation of the geometry factor and fast look-up operations for values of B-spline integrals. Our method builds upon the observation that exact integration is not required to achieve the optimal convergence rate of the solution. In particular, it suffices to generate the linear system within the order of accuracy matching the approximation order of the discretization space. We demonstrate that the best strategy is one that follows the above principle, resulting in expected accuracy and improved computational time. Key words: isogeometric analysis, stiffness matrix, mass matrix, numerical integration, quadrature
    corecore