4 research outputs found

    Exploring intelligent service migration in vehicular networks

    Get PDF
    Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services

    Exploring intelligent service migration in vehicular networks

    Get PDF
    Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services

    Exploring intelligent service migration in a highly mobile network

    Get PDF
    Mobile services allow services to be migrated or replicated closer to users as they move around. This is now regarded as a viable mechanism to provide good Quality of Service to users in highly mobile environments such as vehicular networks. The vehicular environment is rapidly becoming a significant part of the internet and this presents various challenges that must be addressed; this is due to continuous handovers as mobile devices change their point of attachment to these networks resulting in a loss of service. Therefore, this explains the need to build a framework for intelligent service migration. This thesis addresses these issues. It starts by discussing the requirements for intelligent service migration. Then it investigates a low latency Quality of Service Aware Framework as well as an experimental transport protocol that would be favoured by vehicular networks. Furthermore, two analytical models are developed using the Zero-Server Markov Chain technique which is a way of analysing scenarios when the server is not continuously available to serve. Using the Zero-Server Markov Chain, the first analytical model looks at lost service due to continuous handovers and the communication dynamics of vehicular networks, while the second model analyses how service migration affects service delivery in these networks. Formulas are developed to yield the average number of packets in the system, the response time, the probability of blocking and a new parameter called the probability of lost service. These formulas are then applied to the Middlesex VANET Testbed to look at reactive and proactive service migration. These techniques are then incorporated into a new Service Management Framework to provide sustainable Quality of Service and Quality of Experience to mobile users in vehicular networks. This thesis also shows that this new approach is better than current approaches as it addresses key issues in intelligent service migration in such environments, and hence can play a significant part in the development of Intelligent Transport Systems for Smart Cities
    corecore