2,389 research outputs found

    Predictive analytics in agribusiness industries

    Get PDF
    Agriculturally related industries are routinely among the most hazardous work environments. Workplace injuries directly impact labor-market outcomes including income reduction, job loss, and health of the injured workers. In addition to medical and indemnity costs, workplace incidents include indirect costs such as equipment damage and repair, incident investigation time, training new personnel for replacement of the injured ones, an increase in insurance premiums for the year following the incidents, a slowdown of production schedules, damage to companies’ reputation, and lowering the workers’ motivation to return to work. The main purpose of incident analysis is the derivation and development of preventative measures from injury data. Applying proper analytical tools aimed at discovering the causes of occupational incidents is essential to gain useful information that contributes in preventing those incidents in future. Insight gained from the analyses of workers’ compensation data can efficiently direct preventative activities at high-risk industries. Since incidents arise from a combination of factors rather than a single cause, research on occupational incidents must go deeper into identifying the underlying causes and their relationship through applying more comprehensive analyses. Therefore, this study aimed at identifying underlying patterns in occupational injury occurrence and costs using data mining and predictive modeling techniques instead of traditional statistical methods. Utilizing a workers’ compensation claims dataset, the objectives of this study were to: investigate the use of predictive modeling techniques in forecasting future claims costs based on historical data; identify distinctive patterns of high-cost occupational injuries; and examine how well machine learning methods work in finding the predictive relationship between factors influencing occupational injuries and workers’ compensation claims occurrence and severity. The results lead to a better understanding of injury patterns, identification of prevalent causes of occupational injuries, and identification of high-risk industries and occupations. Therefore, various stakeholders such as policymakers, insurance companies, safety standard writers, and manufacturers of safety equipment can use the findings of the study to plan for remedial actions and revise safety standards. The implementation of safety measures by agribusiness organizations can prevent occupational injuries, save lives, and reduce the occurrence and cost of such incidents in agricultural work environments

    Nursing-Relevant Patient Outcomes and Clinical Processes in Data Science Literature: 2019 Year in Review

    Get PDF
    Data science continues to be recognized and used within healthcare due to the increased availability of large data sets and advanced analytics. It can be challenging for nurse leaders to remain apprised of this rapidly changing landscape. In this paper, we describe our findings from a scoping literature review of papers published in 2019 that use data science to explore, explain, and/or predict 15 phenomena of interest to nurses. Fourteen of the 15 phenomena were associated with at least one paper published in 2019. We identified the use of many contemporary data science methods (e.g., natural language processing, neural networks) for many of the outcomes. We found many studies exploring Readmissions and Pressure Injuries. The topics of Artificial Intelligence/Machine Learning Acceptance, Burnout, Patient Safety, and Unit Culture were poorly represented. We hope the studies described in this paper help readers: (a) understand the breadth and depth of data science’s ability to improve clinical processes and patient outcomes that are relevant to nurses and (b) identify gaps in the literature that are in need of exploration

    A scoping literature review of natural language processing application to safety occurrence reports

    Get PDF
    Safety occurrence reports can contain valuable information on how incidents occur, revealing knowledge that can assist safety practitioners. This paper presents and discusses a literature review exploring how Natural Language Processing (NLP) has been applied to occurrence reports within safety-critical industries, informing further research on the topic and highlighting common challenges. Some of the uses of NLP include the ability for occurrence reports to be automatically classified against categories, and entities such as causes and consequences to be extracted from the text as well as the semantic searching of occurrence databases. The review revealed that machine learning models form the dominant method when applying NLP, although rule-based algorithms still provide a viable option for some entity extraction tasks. Recent advances in deep learning models such as Bidirectional Transformers for Language Understanding are now achieving a high accuracy while eliminating the need to substantially pre-process text. The construction of safety-themed datasets would be of benefit for the application of NLP to occurrence reporting, as this would allow the fine-tuning of current language models to safety tasks. An interesting approach is the use of topic modelling, which represents a shift away from the prescriptive classification taxonomies, splitting data into “topics”. Where many papers focus on the computational accuracy of models, they would also benefit from real-world trials to further inform usefulness. It is anticipated that NLP will soon become a mainstream tool used by safety practitioners to efficiently process and gain knowledge from safety-related text

    Visual Analytics of Electronic Health Records with a focus on Acute Kidney Injury

    Get PDF
    The increasing use of electronic platforms in healthcare has resulted in the generation of unprecedented amounts of data in recent years. The amount of data available to clinical researchers, physicians, and healthcare administrators continues to grow, which creates an untapped resource with the ability to improve the healthcare system drastically. Despite the enthusiasm for adopting electronic health records (EHRs), some recent studies have shown that EHR-based systems hardly improve the ability of healthcare providers to make better decisions. One reason for this inefficacy is that these systems do not allow for human-data interaction in a manner that fits and supports the needs of healthcare providers. Another reason is the information overload, which makes healthcare providers often misunderstand, misinterpret, ignore, or overlook vital data. The emergence of a type of computational system known as visual analytics (VA), has the potential to reduce the complexity of EHR data by combining advanced analytics techniques with interactive visualizations to analyze, synthesize, and facilitate high-level activities while allowing users to get more involved in a discourse with the data. The purpose of this research is to demonstrate the use of sophisticated visual analytics systems to solve various EHR-related research problems. This dissertation includes a framework by which we identify gaps in existing EHR-based systems and conceptualize the data-driven activities and tasks of our proposed systems. Two novel VA systems (VISA_M3R3 and VALENCIA) and two studies are designed to bridge the gaps. VISA_M3R3 incorporates multiple regression, frequent itemset mining, and interactive visualization to assist users in the identification of nephrotoxic medications. Another proposed system, VALENCIA, brings a wide range of dimension reduction and cluster analysis techniques to analyze high-dimensional EHRs, integrate them seamlessly, and make them accessible through interactive visualizations. The studies are conducted to develop prediction models to classify patients who are at risk of developing acute kidney injury (AKI) and identify AKI-associated medication and medication combinations using EHRs. Through healthcare administrative datasets stored at the ICES-KDT (Kidney Dialysis and Transplantation program), London, Ontario, we have demonstrated how our proposed systems and prediction models can be used to solve real-world problems

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Social Data Mining for Crime Intelligence

    Get PDF
    With the advancement of the Internet and related technologies, many traditional crimes have made the leap to digital environments. The successes of data mining in a wide variety of disciplines have given birth to crime analysis. Traditional crime analysis is mainly focused on understanding crime patterns, however, it is unsuitable for identifying and monitoring emerging crimes. The true nature of crime remains buried in unstructured content that represents the hidden story behind the data. User feedback leaves valuable traces that can be utilised to measure the quality of various aspects of products or services and can also be used to detect, infer, or predict crimes. Like any application of data mining, the data must be of a high quality standard in order to avoid erroneous conclusions. This thesis presents a methodology and practical experiments towards discovering whether (i) user feedback can be harnessed and processed for crime intelligence, (ii) criminal associations, structures, and roles can be inferred among entities involved in a crime, and (iii) methods and standards can be developed for measuring, predicting, and comparing the quality level of social data instances and samples. It contributes to the theory, design and development of a novel framework for crime intelligence and algorithm for the estimation of social data quality by innovatively adapting the methods of monitoring water contaminants. Several experiments were conducted and the results obtained revealed the significance of this study in mining social data for crime intelligence and in developing social data quality filters and decision support systems
    • …
    corecore