4,782 research outputs found

    Novel Chapter Abstractive Summarization using Spinal Tree Aware Sub-Sentential Content Selection

    Full text link
    Summarizing novel chapters is a difficult task due to the input length and the fact that sentences that appear in the desired summaries draw content from multiple places throughout the chapter. We present a pipelined extractive-abstractive approach where the extractive step filters the content that is passed to the abstractive component. Extremely lengthy input also results in a highly skewed dataset towards negative instances for extractive summarization; we thus adopt a margin ranking loss for extraction to encourage separation between positive and negative examples. Our extraction component operates at the constituent level; our approach to this problem enriches the text with spinal tree information which provides syntactic context (in the form of constituents) to the extraction model. We show an improvement of 3.71 Rouge-1 points over best results reported in prior work on an existing novel chapter dataset

    Semantics-driven Abstractive Document Summarization

    Get PDF
    The evolution of the Web over the last three decades has led to a deluge of scientific and news articles on the Internet. Harnessing these publications in different fields of study is critical to effective end user information consumption. Similarly, in the domain of healthcare, one of the key challenges with the adoption of Electronic Health Records (EHRs) for clinical practice has been the tremendous amount of clinical notes generated that can be summarized without which clinical decision making and communication will be inefficient and costly. In spite of the rapid advances in information retrieval and deep learning techniques towards abstractive document summarization, the results of these efforts continue to resemble extractive summaries, achieving promising results predominantly on lexical metrics but performing poorly on semantic metrics. Thus, abstractive summarization that is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Resources that can be used for generating semantics-driven abstractive summaries include: • Abstracts of multiple scientific articles published in a given technical field of study to generate an abstractive summary for topically-related abstracts within the field, thus reducing the load of having to read semantically duplicate abstracts on a given topic. • Citation contexts from different authoritative papers citing a reference paper can be used to generate utility-oriented abstractive summary for a scientific article. • Biomedical articles and the named entities characterizing the biomedical articles along with background knowledge bases to generate entity and fact-aware abstractive summaries. • Clinical notes of patients and clinical knowledge bases for abstractive clinical text summarization using knowledge-driven multi-objective optimization. In this dissertation, we develop semantics-driven abstractive models based on intra- document and inter-document semantic analyses along with facts of named entities retrieved from domain-specific knowledge bases to produce summaries. Concretely, we propose a sequence of frameworks leveraging semantics at various granularity (e.g., word, sentence, document, topic, citations, and named entities) levels, by utilizing external resources. The proposed frameworks have been applied to a range of tasks including 1. Abstractive summarization of topic-centric multi-document scientific articles and news articles. 2. Abstractive summarization of scientific articles using crowd-sourced citation contexts. 3. Abstractive summarization of biomedical articles clustered based on entity-relatedness. 4. Abstractive summarization of clinical notes of patients with heart failure and Chest X-Rays recordings. The proposed approaches achieve impressive performance in terms of preserving semantics in abstractive summarization while paraphrasing. For summarization of topic-centric multiple scientific/news articles, we propose a three-stage approach where abstracts of scientific articles or news articles are clustered based on their topical similarity determined from topics generated using Latent Dirichlet Allocation (LDA), followed by extractive phase and abstractive phase. Then, in the next stage, we focus on abstractive summarization of biomedical literature where we leverage named entities in biomedical articles to 1) cluster related articles; and 2) leverage the named entities towards guiding abstractive summarization. Finally, in the last stage, we turn to external resources such as citation contexts pointing to a scientific article to generate a comprehensive and utility-centric abstractive summary of a scientific article, domain-specific knowledge bases to fill gaps in information about entities in a biomedical article to summarize and clinical notes to guide abstractive summarization of clinical text. Thus, the bottom-up progression of exploring semantics towards abstractive summarization in this dissertation starts with (i) Semantic Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Internal and External Knowledge-II (Named Entities and Knowledge Bases)

    Doctor of Philosophy

    Get PDF
    dissertationThe objective of this work is to examine the efficacy of natural language processing (NLP) in summarizing bibliographic text for multiple purposes. Researchers have noted the accelerating growth of bibliographic databases. Information seekers using traditional information retrieval techniques when searching large bibliographic databases are often overwhelmed by excessive, irrelevant data. Scientists have applied natural language processing technologies to improve retrieval. Text summarization, a natural language processing approach, simplifies bibliographic data while filtering it to address a user's need. Traditional text summarization can necessitate the use of multiple software applications to accommodate diverse processing refinements known as "points-of-view." A new, statistical approach to text summarization can transform this process. Combo, a statistical algorithm comprised of three individual metrics, determines which elements within input data are relevant to a user's specified information need, thus enabling a single software application to summarize text for many points-of-view. In this dissertation, I describe this algorithm, and the research process used in developing and testing it. Four studies comprised the research process. The goal of the first study was to create a conventional schema accommodating a genetic disease etiology point-of-view, and an evaluative reference standard. This was accomplished through simulating the task of secondary genetic database curation. The second study addressed the development iv and initial evaluation of the algorithm, comparing its performance to the conventional schema using the previously established reference standard, again within the task of secondary genetic database curation. The third and fourth studies evaluated the algorithm's performance in accommodating additional points-of-view in a simulated clinical decision support task. The third study explored prevention, while the fourth evaluated performance for prevention and drug treatment, comparing results to a conventional treatment schema's output. Both summarization methods identified data that were salient to their tasks. The conventional genetic disease etiology and treatment schemas located salient information for database curation and decision support, respectively. The Combo algorithm located salient genetic disease etiology, treatment, and prevention data, for the associated tasks. Dynamic text summarization could potentially serve additional purposes, such as consumer health information delivery, systematic review creation, and primary research. This technology may benefit many user groups

    Are NLP Models Good at Tracing Thoughts: An Overview of Narrative Understanding

    Full text link
    Narrative understanding involves capturing the author's cognitive processes, providing insights into their knowledge, intentions, beliefs, and desires. Although large language models (LLMs) excel in generating grammatically coherent text, their ability to comprehend the author's thoughts remains uncertain. This limitation hinders the practical applications of narrative understanding. In this paper, we conduct a comprehensive survey of narrative understanding tasks, thoroughly examining their key features, definitions, taxonomy, associated datasets, training objectives, evaluation metrics, and limitations. Furthermore, we explore the potential of expanding the capabilities of modularized LLMs to address novel narrative understanding tasks. By framing narrative understanding as the retrieval of the author's imaginative cues that outline the narrative structure, our study introduces a fresh perspective on enhancing narrative comprehension

    Hybrid Long Document Summarization using C2F-FAR and ChatGPT: A Practical Study

    Full text link
    Text summarization is a downstream natural language processing (NLP) task that challenges the understanding and generation capabilities of language models. Considerable progress has been made in automatically summarizing short texts, such as news articles, often leading to satisfactory results. However, summarizing long documents remains a major challenge. This is due to the complex contextual information in the text and the lack of open-source benchmarking datasets and evaluation frameworks that can be used to develop and test model performance. In this work, we use ChatGPT, the latest breakthrough in the field of large language models (LLMs), together with the extractive summarization model C2F-FAR (Coarse-to-Fine Facet-Aware Ranking) to propose a hybrid extraction and summarization pipeline for long documents such as business articles and books. We work with the world-renowned company getAbstract AG and leverage their expertise and experience in professional book summarization. A practical study has shown that machine-generated summaries can perform at least as well as human-written summaries when evaluated using current automated evaluation metrics. However, a closer examination of the texts generated by ChatGPT through human evaluations has shown that there are still critical issues in terms of text coherence, faithfulness, and style. Overall, our results show that the use of ChatGPT is a very promising but not yet mature approach for summarizing long documents and can at best serve as an inspiration for human editors. We anticipate that our work will inform NLP researchers about the extent to which ChatGPT's capabilities for summarizing long documents overlap with practitioners' needs. Further work is needed to test the proposed hybrid summarization pipeline, in particular involving GPT-4, and to propose a new evaluation framework tailored to the task of summarizing long documents

    Watch Less and Uncover More: Could Navigation Tools Help Users Search and Explore Videos?

    Get PDF
    Prior research has shown how ‘content preview tools’ improve speed and accuracy of user relevance judgements across different information retrieval tasks. This paper describes a novel user interface tool, the Content Flow Bar, designed to allow users to quickly identify relevant fragments within informational videos to facilitate browsing, through a cognitively augmented form of navigation. It achieves this by providing semantic “snippets” that enable the user to rapidly scan through video content. The tool provides visuallyappealing pop-ups that appear in a time series bar at the bottom of each video, allowing to see in advance and at a glance how topics evolve in the content. We conducted a user study to evaluate how the tool changes the users search experience in video retrieval, as well as how it supports exploration and information seeking. The user questionnaire revealed that participants found the Content Flow Bar helpful and enjoyable for finding relevant information in videos. The interaction logs of the user study, where participants interacted with the tool for completing two informational tasks, showed that it holds promise for enhancing discoverability of content both across and within videos. This discovered potential could leverage a new generation of navigation tools in search and information retrieval
    • …
    corecore