708 research outputs found

    Deep Architectures for Visual Recognition and Description

    Get PDF
    In recent times, digital media contents are inherently of multimedia type, consisting of the form text, audio, image and video. Several of the outstanding computer Vision (CV) problems are being successfully solved with the help of modern Machine Learning (ML) techniques. Plenty of research work has already been carried out in the field of Automatic Image Annotation (AIA), Image Captioning and Video Tagging. Video Captioning, i.e., automatic description generation from digital video, however, is a different and complex problem altogether. This study compares various existing video captioning approaches available today and attempts their classification and analysis based on different parameters, viz., type of captioning methods (generation/retrieval), type of learning models employed, the desired output description length generated, etc. This dissertation also attempts to critically analyze the existing benchmark datasets used in various video captioning models and the evaluation metrics for assessing the final quality of the resultant video descriptions generated. A detailed study of important existing models, highlighting their comparative advantages as well as disadvantages are also included. In this study a novel approach for video captioning on the Microsoft Video Description (MSVD) dataset and Microsoft Video-to-Text (MSR-VTT) dataset is proposed using supervised learning techniques to train a deep combinational framework, for achieving better quality video captioning via predicting semantic tags. We develop simple shallow CNN (2D and 3D) as feature extractors, Deep Neural Networks (DNNs and Bidirectional LSTMs (BiLSTMs) as tag prediction models and Recurrent Neural Networks (RNNs) (LSTM) model as the language model. The aim of the work was to provide an alternative narrative to generating captions from videos via semantic tag predictions and deploy simpler shallower deep model architectures with lower memory requirements as solution so that it is not very memory extensive and the developed models prove to be stable and viable options when the scale of the data is increased. This study also successfully employed deep architectures like the Convolutional Neural Network (CNN) for speeding up automation process of hand gesture recognition and classification of the sign languages of the Indian classical dance form, ‘Bharatnatyam’. This hand gesture classification is primarily aimed at 1) building a novel dataset of 2D single hand gestures belonging to 27 classes that were collected from (i) Google search engine (Google images), (ii) YouTube videos (dynamic and with background considered) and (iii) professional artists under staged environment constraints (plain backgrounds). 2) exploring the effectiveness of CNNs for identifying and classifying the single hand gestures by optimizing the hyperparameters, and 3) evaluating the impacts of transfer learning and double transfer learning, which is a novel concept explored for achieving higher classification accuracy

    Grounding deep models of visual data

    Get PDF
    Deep models are state-of-the-art for many computer vision tasks including object classification, action recognition, and captioning. As Artificial Intelligence systems that utilize deep models are becoming ubiquitous, it is also becoming crucial to explain why they make certain decisions: Grounding model decisions. In this thesis, we study: 1) Improving Model Classification. We show that by utilizing web action images along with videos in training for action recognition, significant performance boosts of convolutional models can be achieved. Without explicit grounding, labeled web action images tend to contain discriminative action poses, which highlight discriminative portions of a video’s temporal progression. 2) Spatial Grounding. We visualize spatial evidence of deep model predictions using a discriminative top-down attention mechanism, called Excitation Backprop. We show how such visualizations are equally informative for correct and incorrect model predictions, and highlight the shift of focus when different training strategies are adopted. 3) Spatial Grounding for Improving Model Classification at Training Time. We propose a guided dropout regularizer for deep networks based on the evidence of a network prediction. This approach penalizes neurons that are most relevant for model prediction. By dropping such high-saliency neurons, the network is forced to learn alternative paths in order to maintain loss minimization. We demonstrate better generalization ability, an increased utilization of network neurons, and a higher resilience to network compression. 4) Spatial Grounding for Improving Model Classification at Test Time. We propose Guided Zoom, an approach that utilizes spatial grounding to make more informed predictions at test time. Guided Zoom compares the evidence used to make a preliminary decision with the evidence of correctly classified training examples to ensure evidenceprediction consistency, otherwise refines the prediction. We demonstrate accuracy gains for fine-grained classification. 5) Spatiotemporal Grounding. We devise a formulation that simultaneously grounds evidence in space and time, in a single pass, using top-down saliency. We visualize the spatiotemporal cues that contribute to a deep recurrent neural network’s classification/captioning output. Based on these spatiotemporal cues, we are able to localize segments within a video that correspond with a specific action, or phrase from a caption, without explicitly optimizing/training for these tasks
    • …
    corecore