7 research outputs found

    An empirical framework for human-robot proxemics

    Get PDF
    The work described in this paper was conducted within the EU Integrated Projects COGNIRON ("The Cognitive Robot Companion") and LIREC (LIving with Robots and intEractive Companions) and was funded by the European Commission under contract numbers FP6- 002020 and FP7-215554.An empirical framework for Human-Robot (HR) proxemics is proposed which shows how the measurement and control of interpersonal distances between a human and a robot can be potentially used by the robot to interpret, predict and manipulate proxemic behaviour for Human-Robot Interactions (HRIs). The proxemic framework provides for incorporation of inter-factor effects, and can be extended to incorporate new factors, updated values and results. The framework is critically discussed and future work proposed

    A long-term Human-Robot Proxemic study

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A long-term Human-Robot Proxemic (HRP) study was performed using a newly developed Autonomous Proxemic System (APS) for a robot to measure and control the approach distances to the human participants. The main findings were that most HRP adaptation occurred in the first two interaction sessions, and for the remaining four weeks, approach distance preferences remained relatively steady, apart from some short periods of increased distances for some participants. There were indications that these were associated with episodes where the robot malfunctioned, so this raises the possibility of users trust in the robot affecting HRP distance. The study also found that approach distances for humans approaching the robot and the robot approaching the human were comparable, though there were indications that humans preferred to approach the robot more closely than they allowed the robot to approach them in a physically restricted area. Two participants left the study prematurely, stating they were bored with the repetitive experimental procedures. This highlights issues related to the often incompatible demands of keeping experimental controlled conditions vs. having realistic, engaging and varied HRI trial scenarios

    How Should a Robot Approach a Pair of People?

    Get PDF
    This thesis experimentally investigates the comfort of pairs of seated people when they are approached by a robot from different directions. While the effect of robot approach direction on the comfort of a lone person has been investigated previously, the extension to a robot approaching pairs of people has not been explored rigorously. Three maximally-different seating configurations of paired people and eight different robot approach directions were considered. The experiment was augmented with a fourth seating configuration of a lone individual, allowing the responses of grouped and lone participants to be compared. Data obtained from the experiment were analysed using both linear and directional statistics. Results from 180 unique participants showed that the comfort of a person when a robot approached is influenced by the presence and location of a second person. Analysis of these data with directional statistics showed that participant comfort preference clusters into angular regions of ‘suitable for robot approach’ and ‘unsuitable for robot approach’. This finding shows the importance of avoiding robot approach directions of low comfort, rather than selecting a singular robot approach direction of high comfort. Rayleigh’s test of uniformity, a directional statistics method, also shows across all participant configurations that robot approach directions that minimize participant discomfort align spatially with regions that allow for good line of sight of the robot by both people, and are centred on the largest open space that a robot could approach the group from. Participants who were grouped also regarded the robot as having more social agency than did lone experimental participants. Grouped participants were less frustrated with the experimental task and also found it less physically and temporally demanding in comparison to lone experimental participants

    Exploratory studies on social spaces between humans and a mechanical-looking robot

    No full text
    Original article can be found at: http://www.informaworld.com/ Copyright Taylor and Francis / Informa. DOI: 10.1080/09540090600879513 [Full text of this article is not available in the UHRA]The results from two empirical studies of human–robot interaction are presented. The first study involved the subject approaching the static robot and the robot approaching the standing subject. In these trials a small majority of subjects preferred a distance corresponding to the ‘personal zone’ typically used by humans when talking to friends. However, a large minority of subjects got significantly closer, suggesting that they treated the robot differently from a person, and possibly did not view the robot as a social being. The second study involved a scenario where the robot fetched an object that the seated subject had requested, arriving from different approach directions. The results of this second trial indicated that most subjects disliked a frontal approach. Most subjects preferred to be approached from either the left or right side, with a small overall preference for a right approach by the robot. Implications for future work are discussed.Peer reviewe

    Perfectionnement des algorithmes de contrôle-commande des robots manipulateur électriques en interaction physique avec leur environnement par une approche bio-inspirée

    Get PDF
    Automated production lines integrate robots which are isolated from workers, so there is no physical interaction between a human and robot. In the near future, a humanoid robot will become a part of the human environment as a companion to help or work with humans. The aspects of coexistence always presuppose physical and social interaction between a robot and a human. In humanoid robotics, further progress depends on knowledge of cognitive mechanisms of interpersonal interaction as robots physically and socially interact with humans. An illustrative example of interpersonal interaction is an act of a handshake that plays a substantial social role. The particularity of this form of interpersonal interaction is that it is based on physical and social couplings which lead to synchronization of motion and efforts. Studying a handshake for robots is interesting as it can expand their behavioral properties for interaction with a human being in more natural way. The first chapter of this thesis presents the state of the art in the fields of social sciences, medicine and humanoid robotics that study the phenomenon of a handshake. The second chapter is dedicated to the physical nature of the phenomenon between humans via quantitative measurements. A new wearable system to measure a handshake was built in Donetsk National Technical University (Ukraine). It consists of a set of several sensors attached to the glove for recording angular velocities and gravitational acceleration of the hand and forces in certain points of hand contact during interaction. The measurement campaigns have shown that there is a phenomenon of mutual synchrony that is preceded by the phase of physical contact which initiates this synchrony. Considering the rhythmic nature of this phenomenon, the controller based on the models of rhythmic neuron of Rowat-Selverston, with learning the frequency during interaction was proposed and studied in the third chapter. Chapter four deals with the experiences of physical human-robot interaction. The experimentations with robot arm Katana show that it is possible for a robot to learn to synchronize its rhythm with rhythms imposed by a human during handshake with the proposed model of a bio-inspired controller. A general conclusion and perspectives summarize and finish this work.Les robots intégrés aux chaînes de production sont généralement isolés des ouvriers et ne prévoient pas d'interaction physique avec les humains. Dans le futur, le robot humanoïde deviendra un partenaire pour vivre ou travailler avec les êtres humains. Cette coexistence prévoit l'interaction physique et sociale entre le robot et l'être humain. En robotique humanoïde les futurs progrès dépendront donc des connaissances dans les mécanismes cognitifs présents dans les interactions interpersonnelles afin que les robots interagissent avec les humains physiquement et socialement. Un bon exemple d'interaction interpersonnelle est l'acte de la poignée de la main qui possède un rôle social très important. La particularité de cette interaction est aussi qu'elle est basée sur un couplage physique et social qui induit une synchronisation des mouvements et des efforts. L'intérêt d'étudier la poignée de main pour les robots consiste donc à élargir leurs propriétés comportementales pour qu'ils interagissent avec les humains de manière plus habituelle.Cette thèse présente dans un premier chapitre un état de l'art sur les travaux dans les domaines des sciences humaines, de la médecine et de la robotique humanoïde qui sont liés au phénomène de la poignée de main. Le second chapitre, est consacré à la nature physique du phénomène de poignée de main chez l'être humain par des mesures quantitatives des mouvements. Pour cela un système de mesures a été construit à l'Université Nationale Technique de Donetsk (Ukraine). Il est composé d'un gant instrumenté par un réseau de capteurs portés qui permet l'enregistrement des vitesses et accélérations du poignet et les forces aux points de contact des paumes, lors de l'interaction. Des campagnes de mesures ont permis de montrer la présence d'un phénomène de synchronie mutuelle précédé d'une phase de contact physique qui initie cette synchronie. En tenant compte de cette nature rythmique, un contrôleur à base de neurones rythmiques de Rowat-Selverston, intégrant un mécanisme d'apprentissage de la fréquence d'interaction, est proposé et etudié dans le troisième chapitre pour commander un bras robotique. Le chapitre quatre est consacré aux expériences d'interaction physique homme/robot. Des expériences avec un bras robotique Katana montrent qu'il est possible d'apprendre à synchroniser la rythmicité du robot avec celle imposée par une per-sonne lors d'une poignée de main grâce à ce modèle de contrôleur bio-inspiré. Une conclusion générale dresse le bilan des travaux menés et propose des perspectives

    An investigation of service degradation in long-term human-robot interaction with a particular reference to recharge behaviour

    Get PDF
    Autonomous long-term operation of social robots has always been a challenge in Human robot-interaction. Social mobile robots acting as companions or assistants will need to operate over a long-term period of time (days, weeks or even months) to perform daily tasks and interact with users. Therefore they should be capable of operating with a great degree of autonomy and will require sustainable social intelligence. Social robots are fallible and have their own limitations with the service they provide. One of the most important limitations of mobile robots is power constraints and the need for frequent recharging. Social mobile robots generally draw power from batteries carried on the robot in order to operate various sensors, actuators and perform tasks. However, batteries have a limited power life and take a long time to recharge via a power source. While the recharge behaviour is active, which may impede human-robot interaction and lead to service degradation. This thesis raises some important issues related to recharge behaviour of social mobile robots which appear to have been overlooked in social robotics research. This work investigated service degradation in long-term interaction due to recharge behaviour of autonomous social mobile robots and proposes an approach to manage service degradation due to recharge. First we performed a long-term study to investigate the service degradation caused by the recharging behaviour of a social robot. Second we conducted a more focused social study which helped to understand user’s attitudes towards a mobile robot with respect to recharge activity. We explored a social strategy by modifying the robot’s verbal behaviour to manage service degradation during recharge. The results obtained from our social study indicates the use of verbal strategies (transparency, apology, politeness) made the robot more acceptable to the users during recharge. We believe that social mobile robots should behave in a socially intelligent manner while managing service degradation. We also provide some recommendations for social mobile robots to manage their recharge behaviour in this thesis
    corecore