2 research outputs found

    Elements About Exploratory, Knowledge-Based, Hybrid, and Explainable Knowledge Discovery

    Get PDF
    International audienceKnowledge Discovery in Databases (KDD) and especially pattern mining can be interpreted along several dimensions, namely data, knowledge, problem-solving and interactivity. These dimensions are not disconnected and have a direct impact on the quality, applicability, and efficiency of KDD. Accordingly, we discuss some objectives of KDD based on these dimensions, namely exploration, knowledge orientation, hybridization, and explanation. The data space and the pattern space can be explored in several ways, depending on specific evaluation functions and heuristics, possibly related to domain knowledge. Furthermore, numerical data are complex and supervised numerical machine learning methods are usually the best candidates for efficiently mining such data. However, the work and output of numerical methods are most of the time hard to understand, while symbolic methods are usually more intelligible. This calls for hybridization, combining numerical and symbolic mining methods to improve the applicability and interpretability of KDD. Moreover, suitable explanations about the operating models and possible subsequent decisions should complete KDD, and this is far from being the case at the moment. For illustrating these dimensions and objectives, we analyze a concrete case about the mining of biological data, where we characterize these dimensions and their connections. We also discuss dimensions and objectives in the framework of Formal Concept Analysis and we draw some perspectives for future research

    Exploratory Knowledge Discovery over Web of Data

    Get PDF
    International audienceWith an increased interest in machine processable data and with the progress of semantic technologies, many datasets are now published in the form of RDF triples for constituting the so-called Web of Data. Data can be queried using SPARQL but there are still needs for integrating, classifying and exploring the data for data analysis and knowledge discovery purposes. This research work proposes a new approach based on Formal Concept Analysis and Pattern Structures for building a pattern concept lattice from a set of RDF triples. This lattice can be used for data exploration and in particular visualized thanks to an adapted tool. The specific pattern structure introduced for RDF data allows to make a bridge with other studies on the use of structured attribute sets when building concept lattices. Our approach is experimentally validated on the classification of RDF data showing the efficiency of the underlying algorithms
    corecore