37,611 research outputs found

    A query suggestion workflow for life science IR-systems

    Get PDF
    Summary Information Retrieval (IR) plays a central role in the exploration and interpretation of integrated biological datasets that represent the heterogeneous ecosystem of life sciences. Here, keyword based query systems are popular user interfaces. In turn, to a large extend, the used query phrases determine the quality of the search result and the effort a scientist has to invest for query refinement. In this context, computer aided query expansion and suggestion is one of the most challenging tasks for life science information systems. Existing query front-ends support aspects like spelling correction, query refinement or query expansion. However, the majority of the front-ends only make limited use of enhanced IR algorithms to implement comprehensive and computer aided query refinement workflows. In this work, we present the design of a multi-stage query suggestion workflow and its implementation in the life science IR system LAILAPS. The presented workflow includes enhanced tokenisation, word breaking, spelling correction, query expansion and query suggestion ranking. A spelling correction benchmark with 5,401 queries and manually selected use cases for query expansion demonstrate the performance of the implemented workflow and its advantages compared with state-of-the-art systems.</jats:p

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    Measuring the impact of temporal context on video retrieval

    Get PDF
    In this paper we describe the findings from the K-Space interactive video search experiments in TRECVid 2007, which examined the effects of including temporal context in video retrieval. The traditional approach to presenting video search results is to maximise recall by offering a user as many potentially relevant shots as possible within a limited amount of time. ‘Context’-oriented systems opt to allocate a portion of theresults presentation space to providing additional contextual cues about the returned results. In video retrieval these cues often include temporal information such as a shot’s location within the overall video broadcast and/or its neighbouring shots. We developed two interfaces with identical retrieval functionality in order to measure the effects of such context on user performance. The first system had a ‘recall-oriented’ interface, where results from a query were presented as a ranked list of shots. The second was ‘contextoriented’, with results presented as a ranked list of broadcasts. 10 users participated in the experiments, of which 8 were novices and 2 experts. Participants completed a number of retrieval topics using both the recall-oriented and context-oriented systems

    ImageSieve: Exploratory search of museum archives with named entity-based faceted browsing

    Get PDF
    Over the last few years, faceted search emerged as an attractive alternative to the traditional "text box" search and has become one of the standard ways of interaction on many e-commerce sites. However, these applications of faceted search are limited to domains where the objects of interests have already been classified along several independent dimensions, such as price, year, or brand. While automatic approaches to generate faceted search interfaces were proposed, it is not yet clear to what extent the automatically-produced interfaces will be useful to real users, and whether their quality can match or surpass their manually-produced predecessors. The goal of this paper is to introduce an exploratory search interface called ImageSieve, which shares many features with traditional faceted browsing, but can function without the use of traditional faceted metadata. ImageSieve uses automatically extracted and classified named entities, which play important roles in many domains (such as news collections, image archives, etc.). We describe one specific application of ImageSieve for image search. Here, named entities extracted from the descriptions of the retrieved images are used to organize a faceted browsing interface, which then helps users to make sense of and further explore the retrieved images. The results of a user study of ImageSieve demonstrate that a faceted search system based on named entities can help users explore large collections and find relevant information more effectively

    Ariadne's Thread - Interactive Navigation in a World of Networked Information

    Full text link
    This work-in-progress paper introduces an interface for the interactive visual exploration of the context of queries using the ArticleFirst database, a product of OCLC. We describe a workflow which allows the user to browse live entities associated with 65 million articles. In the on-line interface, each query leads to a specific network representation of the most prevailing entities: topics (words), authors, journals and Dewey decimal classes linked to the set of terms in the query. This network represents the context of a query. Each of the network nodes is clickable: by clicking through, a user traverses a large space of articles along dimensions of authors, journals, Dewey classes and words simultaneously. We present different use cases of such an interface. This paper provides a link between the quest for maps of science and on-going debates in HCI about the use of interactive information visualisation to empower users in their search.Comment: CHI'15 Extended Abstracts, April 18-23, 2015, Seoul, Republic of Korea. ACM 978-1-4503-3146-3/15/0

    Counterfactual Estimation and Optimization of Click Metrics for Search Engines

    Full text link
    Optimizing an interactive system against a predefined online metric is particularly challenging, when the metric is computed from user feedback such as clicks and payments. The key challenge is the counterfactual nature: in the case of Web search, any change to a component of the search engine may result in a different search result page for the same query, but we normally cannot infer reliably from search log how users would react to the new result page. Consequently, it appears impossible to accurately estimate online metrics that depend on user feedback, unless the new engine is run to serve users and compared with a baseline in an A/B test. This approach, while valid and successful, is unfortunately expensive and time-consuming. In this paper, we propose to address this problem using causal inference techniques, under the contextual-bandit framework. This approach effectively allows one to run (potentially infinitely) many A/B tests offline from search log, making it possible to estimate and optimize online metrics quickly and inexpensively. Focusing on an important component in a commercial search engine, we show how these ideas can be instantiated and applied, and obtain very promising results that suggest the wide applicability of these techniques

    Contextualised Browsing in a Digital Library's Living Lab

    Full text link
    Contextualisation has proven to be effective in tailoring \linebreak search results towards the users' information need. While this is true for a basic query search, the usage of contextual session information during exploratory search especially on the level of browsing has so far been underexposed in research. In this paper, we present two approaches that contextualise browsing on the level of structured metadata in a Digital Library (DL), (1) one variant bases on document similarity and (2) one variant utilises implicit session information, such as queries and different document metadata encountered during the session of a users. We evaluate our approaches in a living lab environment using a DL in the social sciences and compare our contextualisation approaches against a non-contextualised approach. For a period of more than three months we analysed 47,444 unique retrieval sessions that contain search activities on the level of browsing. Our results show that a contextualisation of browsing significantly outperforms our baseline in terms of the position of the first clicked item in the result set. The mean rank of the first clicked document (measured as mean first relevant - MFR) was 4.52 using a non-contextualised ranking compared to 3.04 when re-ranking the result lists based on similarity to the previously viewed document. Furthermore, we observed that both contextual approaches show a noticeably higher click-through rate. A contextualisation based on document similarity leads to almost twice as many document views compared to the non-contextualised ranking.Comment: 10 pages, 2 figures, paper accepted at JCDL 201
    • 

    corecore