456 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    A Study on Device To Device Communication in Wireless Mobile Network

    Full text link
    Volume 3 Issue 3 (March 2015

    Spectral and Energy Efficient D2D Communication Underlay 5G Networks: A Mixed Strategy Approach

    Get PDF
    4G is now deployed all over the world, but requirements are about to change rapidly face to the exponential growth on devices number, local service applications and spectrum scarce. To deal with that, 5G networks integrated Device To Device (D2D) communication as a key technology in its evolving architecture. From 3GPP Rel-12 to Rel-16, D2D succeeded to improve network capacity by enhancing spectrum reuse, data rates and reducing end-to-end latency. However, despite all these advantages, it implies new challenges in 5G system design as interference, spectrum and energy consumption. As a contribution, we propose in this paper a joint spectrum and energy efficient resource allocation algorithm for D2D communications. This approach maximizes the total spectrum efficiency and reduces UEs power consumption. Contrarily to most of previous studies on resource allocation problems considering only centralized and pure strategies approaches, we propose a distributed algorithm based on new mathematical game theory model as an interpretation of mixed strategy non cooperative game. We extend our previous research, by focusing on power consumption issue. Our proposed solution enhances joint SE/EE tradeoff by minimizing interferences and power consumption via a smart RB allocation. This new approach allows users to adopt more accurate strategies and maximize their utilities according to the random network behavior
    corecore