519 research outputs found

    Sketching Multidimensional Time Series for Fast Discord Mining

    Full text link
    Time series discords are a useful primitive for time series anomaly detection, and the matrix profile is capable of capturing discord effectively. There exist many research efforts to improve the scalability of discord discovery with respect to the length of time series. However, there is surprisingly little work focused on reducing the time complexity of matrix profile computation associated with dimensionality of a multidimensional time series. In this work, we propose a sketch for discord mining among multi-dimensional time series. After an initial pre-processing of the sketch as fast as reading the data, the discord mining has runtime independent of the dimensionality of the original data. On several real world examples from water treatment and transportation, the proposed algorithm improves the throughput by at least an order of magnitude (50X) and only has minimal impact on the quality of the approximated solution. Additionally, the proposed method can handle the dynamic addition or deletion of dimensions inconsequential overhead. This allows a data analyst to consider "what-if" scenarios in real time while exploring the data

    Sketching as a Tool for Efficient Networked Systems

    Get PDF
    Today, computer systems need to cope with the explosive growth of data in the world. For instance, in data-center networks, monitoring systems are used to measure traffic statistics at high speed; and in financial technology companies, distributed processing systems are deployed to support graph analytics. To fulfill the requirements of handling such large datasets, we build efficient networked systems in a distributed manner most of the time. Ideally, we expect the systems to meet service-level objectives (SLOs) using the least amount of resource. However, existing systems constructed with conventional in-memory algorithms face the following challenges: (1) excessive resource requirements (e.g., CPU, ASIC, and memory) with high cost; (2) infeasibility in a larger scale; (3) processing the data too slowly to meet the objectives. To address these challenges, we propose sketching techniques as a tool to build more efficient networked systems. Sketching algorithms aim to process the data with one or several passes in an online, streaming fashion (e.g., a stream of network packets), and compute highly accurate results. With sketching, we only maintain a compact summary of the entire data and provide theoretical guarantees on error bounds. This dissertation argues for a sketching based design for large-scale networked systems, and demonstrates the benefits in three application contexts: (i) Network monitoring: we build generic monitoring frameworks that support a range of applications on both software and hardware with universal sketches. (ii) Graph pattern mining: we develop a swift, approximate graph pattern miner that scales to very large graphs by leveraging graph sketching techniques. (iii) Halo finding in N-body simulations: we design scalable halo finders on CPU and GPU by leveraging sketch-based heavy hitter algorithms

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security
    corecore