8,348 research outputs found

    Exploiting Causal Independence in Bayesian Network Inference

    Full text link
    A new method is proposed for exploiting causal independencies in exact Bayesian network inference. A Bayesian network can be viewed as representing a factorization of a joint probability into the multiplication of a set of conditional probabilities. We present a notion of causal independence that enables one to further factorize the conditional probabilities into a combination of even smaller factors and consequently obtain a finer-grain factorization of the joint probability. The new formulation of causal independence lets us specify the conditional probability of a variable given its parents in terms of an associative and commutative operator, such as ``or'', ``sum'' or ``max'', on the contribution of each parent. We start with a simple algorithm VE for Bayesian network inference that, given evidence and a query variable, uses the factorization to find the posterior distribution of the query. We show how this algorithm can be extended to exploit causal independence. Empirical studies, based on the CPCS networks for medical diagnosis, show that this method is more efficient than previous methods and allows for inference in larger networks than previous algorithms.Comment: See http://www.jair.org/ for any accompanying file

    Cooperative Monitoring to Diagnose Multiagent Plans

    Get PDF
    Diagnosing the execution of a Multiagent Plan (MAP) means identifying and explaining action failures (i.e., actions that did not reach their expected effects). Current approaches to MAP diagnosis are substantially centralized, and assume that action failures are inde-pendent of each other. In this paper, the diagnosis of MAPs, executed in a dynamic and partially observable environment, is addressed in a fully distributed and asynchronous way; in addition, action failures are no longer assumed as independent of each other. The paper presents a novel methodology, named Cooperative Weak-Committed Moni-toring (CWCM), enabling agents to cooperate while monitoring their own actions. Coop-eration helps the agents to cope with very scarcely observable environments: what an agent cannot observe directly can be acquired from other agents. CWCM exploits nondetermin-istic action models to carry out two main tasks: detecting action failures and building trajectory-sets (i.e., structures representing the knowledge an agent has about the environ-ment in the recent past). Relying on trajectory-sets, each agent is able to explain its own action failures in terms of exogenous events that have occurred during the execution of the actions themselves. To cope with dependent failures, CWCM is coupled with a diagnostic engine that distinguishes between primary and secondary action failures. An experimental analysis demonstrates that the CWCM methodology, together with the proposed diagnostic inferences, are effective in identifying and explaining action failures even in scenarios where the system observability is significantly reduced. 1
    • …
    corecore