323 research outputs found

    Antenna and Random Access Solutions for nano-satellite and 5G networks operating in the millimiter-wave domain

    Get PDF
    L\u2019obiettivo di questa tesi \ue8 la discussione di soluzioni per reti satellitari basate su nano-satelliti e reti 5G, operanti in onde millimetriche. I contributi originali di questo lavoro interessano due settori che ricoprono un ruolo chiave nel contesto delle comunicazioni digitali ad alta velocit\ue0 e alta capacit\ue0: i meccanismi di condivisione del mezzo trasmissivo basati sull\u2019accesso casuale e le antenne a schiera riconfigurabili e compatte. I risultati ottenuti in questi due ambiti sono poi applicati in un\u2019architettura di rete che integra sistemi 5G terrestri e una costellazione di nanosatelliti in orbita bassa. Le comunicazioni satellitari sono sempre pi\uf9 parte integrante della vita quotidiana. Negli ultimi anni, si \ue8 registrata una crescita notevole dei piccoli satelliti (da 1 a 100 kg), sia in termini di tecnologia, che di frequenza di utilizzo. Non solo vengono lanciati in gran numero, ma si \ue8 iniziato ad utilizzarli in costellazioni da diverse decine di unit\ue0. Questa attivit\ue0 \ue8 l\u2019indicatore di una prospettiva ormai prossima: gli sviluppi nel settore dell\u2019Information and Communication Technology hanno avviato diverse iniziative che puntano ad utilizzare megacostellazioni di satelliti come reti per la fornitura di servizi di comunicazione a banda larga. Lo sfruttamento delle onde millimetriche rappresenta quindi un punto cardine per soddisfare la crescente richiesta di capacit\ue0 dei sistemi radio di prossima generazione. Inoltre, lo scenario che ne risulta \ue8 tale da richiedere una connettivit\ue0 completa, cos\uec che ogni satellite operi come un nodo di rete a tutto tondo, con possibilit\ue0 di collegamento tra la terra e lo spazio, e da satellite a satellite. In tale contesto, il ricorso a moderne tecniche di accesso casuale \ue8 particolarmente indicato. Negli ultimi anni si \ue8 assistito a un rinnovato interesse per i protocolli di tipo Aloha, grazie alla possibilit\ue0 di dotare i ricevitori di sistemi di cancellazione dell\u2019interferenza. A tale proposito, viene presentato un nuovo algoritmo che affianca alla cancellazione iterativa di interferenza lo sfruttamento dell\u2019effetto cattura, tenendo al tempo stesso presente la possibile non idealit\ue0 della cancellazione, e quindi la presenza di un residuo. Le sue prestazioni sono confrontate con i metodi attualmente adottati negli standard, mostrando un miglioramento del throughput pari al 31%. Viene inoltre presentata la sintesi di un\u2019antenna a schiera operante in banda Ka adatta per l\u2019uso su nanosatelliti. La schiera risultante offre interessanti benefici in termini di larghezza di banda, polarizzazione e versatilit\ue0, essendo possibile un utilizzo dual-task (downlink verso terra e collegamentointersatellitare). I risultati cos\uec ottenuti sono poi utilizzati per dimostrare, in un simulatore tempo discreto ed evento discreto, le prestazioni ottenibili da un\u2019architettura di rete integrante segmenti di rete radiomobile 5G con una dorsale costituita da una costellazione di nanosatellti. Il simulatore si avvale inoltre di un modello teorico per valutare l\u2019impatto della distribuzione geometrica dei nodi interferenti su una comunicazione in onde millimetriche di tipo line-of-sight. Tale modello, validato con simulazioni di tipo Monte Carlo, contempla i diagrammi di radiazione delle antenne e i recenti modelli di canale in onde millimetriche, che tengono in considerazione rumore, dispersione angolare, fading e bounded path loss. Sono state ricavate delle formulazioni analitiche per la distribuzione della potenza di rumore e interferenza, che consentono di valutare in forma chiusa la probabilit\ue0 di cattura. Tale impostazione \ue8 stata infine usata per discutere gli effetti dell\u2019interferenza sulla capacit\ue0 di Shannon di un collegamento in uplink operante in onde millimetriche, prendendo in considerazione delle condizioni realistiche per il canale

    Nanosatellite-5G Integration in the Millimeter Wave Domain: A Full Top-Down Approach

    Get PDF
    This paper presents a novel network architecture for an integrated nanosatellite (nSAT)-5G system operating in the millimeter-wave (mmWave) domain. The architecture is realized adopting a delay/disruption tolerant networking (DTN) approach allowing end users to adopt standard devices. A buffer aware contact graph routing algorithm is designed to account for the buffer occupancy of the nSATs and for the connection planning derived from their visibility periods. At the terrestrial uplink, a coded random access is employed to realize a high-capacity interface for the typically irregular traffic of 5G users, while, at the space uplink, the DTN architecture is combined with the contention resolution diversity slotted Aloha protocol to match the recent update of the DVB-RCS2 standard. To achieve a reliable testing of the introduced functionalities, an accurate analysis of the statistic of the signal to interference-plus-noise ratio and of the capture probability at each mmWave link is developed by including interference, shadowing, fading, and noise. The application of the designed architecture to data transfer services in conjunction with possible delay reduction strategies, and an extension to inter-satellite communication, are finally presented by estimating the resulting loss/delay performance through a discrete-time discrete-event platform based on the integration of Matlab with Network Simulator 3

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    Modeling and Analysis of Cellular Networks Using Stochastic Geometry: A Tutorial

    Get PDF
    This paper presents a tutorial on stochastic geometry (SG)-based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. This paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of this paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. This paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, this paper highlights the state-of-the-art research and points out future research directions
    corecore