183 research outputs found

    What’s Happening Around the World? A Survey and Framework on Event Detection Techniques on Twitter

    Full text link
    © 2019, Springer Nature B.V. In the last few years, Twitter has become a popular platform for sharing opinions, experiences, news, and views in real-time. Twitter presents an interesting opportunity for detecting events happening around the world. The content (tweets) published on Twitter are short and pose diverse challenges for detecting and interpreting event-related information. This article provides insights into ongoing research and helps in understanding recent research trends and techniques used for event detection using Twitter data. We classify techniques and methodologies according to event types, orientation of content, event detection tasks, their evaluation, and common practices. We highlight the limitations of existing techniques and accordingly propose solutions to address the shortcomings. We propose a framework called EDoT based on the research trends, common practices, and techniques used for detecting events on Twitter. EDoT can serve as a guideline for developing event detection methods, especially for researchers who are new in this area. We also describe and compare data collection techniques, the effectiveness and shortcomings of various Twitter and non-Twitter-based features, and discuss various evaluation measures and benchmarking methodologies. Finally, we discuss the trends, limitations, and future directions for detecting events on Twitter

    Personalized Expert Recommendation: Models and Algorithms

    Get PDF
    Many large-scale information sharing systems including social media systems, questionanswering sites and rating and reviewing applications have been growing rapidly, allowing millions of human participants to generate and consume information on an unprecedented scale. To manage the sheer growth of information generation, there comes the need to enable personalization of information resources for users — to surface high-quality content and feeds, to provide personally relevant suggestions, and so on. A fundamental task in creating and supporting user-centered personalization systems is to build rich user profile to aid recommendation for better user experience. Therefore, in this dissertation research, we propose models and algorithms to facilitate the creation of new crowd-powered personalized information sharing systems. Specifically, we first give a principled framework to enable personalization of resources so that information seekers can be matched with customized knowledgeable users based on their previous historical actions and contextual information; We then focus on creating rich user models that allows accurate and comprehensive modeling of user profiles for long tail users, including discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile. In particular, this dissertation research makes two unique contributions: First, we introduce the problem of personalized expert recommendation and propose the first principled framework for addressing this problem. To overcome the sparsity issue, we investigate the use of user’s contextual information that can be exploited to build robust models of personal expertise, study how spatial preference for personally-valuable expertise varies across regions, across topics and based on different underlying social communities, and integrate these different forms of preferences into a matrix factorization-based personalized expert recommender. Second, to support the personalized recommendation on experts, we focus on modeling and inferring user profiles in online information sharing systems. In order to tap the knowledge of most majority of users, we provide frameworks and algorithms to accurately and comprehensively create user models by discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile, with each described shortly as follows: —We develop a probabilistic model called Bayesian Contextual Poisson Factorization to discover what users are known for by others. Our model considers as input a small fraction of users whose known-for profiles are already known and the vast majority of users for whom we have little (or no) information, learns the implicit relationships between user?s known-for profiles and their contextual signals, and finally predict known-for profiles for those majority of users. —We explore user’s topic-sensitive opinion bias, propose a lightweight semi-supervised system called “BiasWatch” to semi-automatically infer the opinion bias of long-tail users, and demonstrate how user’s opinion bias can be exploited to recommend other users with similar opinion in social networks. — We study how a user’s topical profile varies geo-spatially and how we can model a user’s geo-spatial known-for profile as the last step in our dissertation for creation of rich user profile. We propose a multi-layered Bayesian hierarchical user factorization to overcome user heterogeneity and an enhanced model to alleviate the sparsity issue by integrating user contexts into the two-layered hierarchical user model for better representation of user’s geo-topic preference by others

    Enhanced Heartbeat Graph for emerging event detection on Twitter using time series networks

    Full text link
    © 2019 Elsevier Ltd With increasing popularity of social media, Twitter has become one of the leading platforms to report events in real-time. Detecting events from Twitter stream requires complex techniques. Event-related trending topics consist of a group of words which successfully detect and identify events. Event detection techniques must be scalable and robust, so that they can deal with the huge volume and noise associated with social media. Existing event detection methods mostly rely on burstiness, mainly the frequency of words and their co-occurrences. However, burstiness sometimes dominates other relevant details in the data which could be equally significant. Besides, the topological and temporal relationships in the data are often ignored. In this work, we propose a novel graph-based approach, called the Enhanced Heartbeat Graph (EHG), which detects events efficiently. EHG suppresses dominating topics in the subsequent data stream, after their first detection. Experimental results on three real-world datasets (i.e., Football Association Challenge Cup Final, Super Tuesday, and the US Election 2012) show superior performance of the proposed approach in comparison to the state-of-the-art techniques

    Geo-Information Harvesting from Social Media Data

    Get PDF
    As unconventional sources of geo-information, massive imagery and text messages from open platforms and social media form a temporally quasi-seamless, spatially multi-perspective stream, but with unknown and diverse quality. Due to its complementarity to remote sensing data, geo-information from these sources offers promising perspectives, but harvesting is not trivial due to its data characteristics. In this article, we address key aspects in the field, including data availability, analysis-ready data preparation and data management, geo-information extraction from social media text messages and images, and the fusion of social media and remote sensing data. We then showcase some exemplary geographic applications. In addition, we present the first extensive discussion of ethical considerations of social media data in the context of geo-information harvesting and geographic applications. With this effort, we wish to stimulate curiosity and lay the groundwork for researchers who intend to explore social media data for geo-applications. We encourage the community to join forces by sharing their code and data.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Social media as intelligence in disaster response: eyewitness classification using community detection

    Get PDF
    Disasters cause widespread devastation to both physical infrastructure and the lives of individuals residing in large geographic areas. The disruption caused by disaster events is further compounded by high levels of uncertainty and information scarcity, presenting significant challenges to disaster response organisations and impeding the effectiveness of coordinated response efforts. The increasing use of digital technologies, such as social media, presents valuable sources of information that are available in real-time from geographically-distributed networks of ‘humans as sensors’. The data generated by these technologies can supplement traditional sources of intelligence to build models of situational awareness and inform decision-making, resulting in more effective disaster response operations. This thesis proposes a method of curating social media data to enhance its usefulness as a source of intelligence for disaster response organisations during crisis events. The research was conducted in four phases: (i) An ethnographic study developed a conceptual framework of the values and challenges of social media intelligence as perceived by disaster response practitioners. High data volume and low rates of relevance were established as key factors impeding integration with existing intelligence sources. (ii) Empirical studies of Twitter discourse were conducted during eight disaster events to identify patterns of online behaviour and establish the informative potential of social media data as a rich source of eyewitness reports. (iii) Geoproximate preferential attachment (homophily) was identified in the structure of Twitter relationship networks. An eyewitness classification model integrated relationship features for data curation. The model was evaluated on temporally-partitioned subgraphs and shown to be effective in real-time environments. (iv) The classification model was validated in simulated disaster response scenarios conducted with emergency service practitioners. Feedback from participants confirmed the effectiveness of the approach to improving the practical value of social media data as a source of intelligence during disaster response operations

    Improving Marketing Intelligence Using Online User-Generated Contents

    Get PDF

    Personalized Expert Recommendation: Models and Algorithms

    Get PDF
    Many large-scale information sharing systems including social media systems, questionanswering sites and rating and reviewing applications have been growing rapidly, allowing millions of human participants to generate and consume information on an unprecedented scale. To manage the sheer growth of information generation, there comes the need to enable personalization of information resources for users — to surface high-quality content and feeds, to provide personally relevant suggestions, and so on. A fundamental task in creating and supporting user-centered personalization systems is to build rich user profile to aid recommendation for better user experience. Therefore, in this dissertation research, we propose models and algorithms to facilitate the creation of new crowd-powered personalized information sharing systems. Specifically, we first give a principled framework to enable personalization of resources so that information seekers can be matched with customized knowledgeable users based on their previous historical actions and contextual information; We then focus on creating rich user models that allows accurate and comprehensive modeling of user profiles for long tail users, including discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile. In particular, this dissertation research makes two unique contributions: First, we introduce the problem of personalized expert recommendation and propose the first principled framework for addressing this problem. To overcome the sparsity issue, we investigate the use of user’s contextual information that can be exploited to build robust models of personal expertise, study how spatial preference for personally-valuable expertise varies across regions, across topics and based on different underlying social communities, and integrate these different forms of preferences into a matrix factorization-based personalized expert recommender. Second, to support the personalized recommendation on experts, we focus on modeling and inferring user profiles in online information sharing systems. In order to tap the knowledge of most majority of users, we provide frameworks and algorithms to accurately and comprehensively create user models by discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile, with each described shortly as follows: —We develop a probabilistic model called Bayesian Contextual Poisson Factorization to discover what users are known for by others. Our model considers as input a small fraction of users whose known-for profiles are already known and the vast majority of users for whom we have little (or no) information, learns the implicit relationships between user?s known-for profiles and their contextual signals, and finally predict known-for profiles for those majority of users. —We explore user’s topic-sensitive opinion bias, propose a lightweight semi-supervised system called “BiasWatch” to semi-automatically infer the opinion bias of long-tail users, and demonstrate how user’s opinion bias can be exploited to recommend other users with similar opinion in social networks. — We study how a user’s topical profile varies geo-spatially and how we can model a user’s geo-spatial known-for profile as the last step in our dissertation for creation of rich user profile. We propose a multi-layered Bayesian hierarchical user factorization to overcome user heterogeneity and an enhanced model to alleviate the sparsity issue by integrating user contexts into the two-layered hierarchical user model for better representation of user’s geo-topic preference by others

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management
    • 

    corecore