9,350 research outputs found

    Using semantic indexing to improve searching performance in web archives

    Get PDF
    The sheer volume of electronic documents being published on the Web can be overwhelming for users if the searching aspect is not properly addressed. This problem is particularly acute inside archives and repositories containing large collections of web resources or, more precisely, web pages and other web objects. Using the existing search capabilities in web archives, results can be compromised because of the size of data, content heterogeneity and changes in scientific terminologies and meanings. During the course of this research, we will explore whether semantic web technologies, particularly ontology-based annotation and retrieval, could improve precision in search results in multi-disciplinary web archives

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Exploiting synergy between ontologies and recommender systems

    Get PDF
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Ranking Archived Documents for Structured Queries on Semantic Layers

    Full text link
    Archived collections of documents (like newspaper and web archives) serve as important information sources in a variety of disciplines, including Digital Humanities, Historical Science, and Journalism. However, the absence of efficient and meaningful exploration methods still remains a major hurdle in the way of turning them into usable sources of information. A semantic layer is an RDF graph that describes metadata and semantic information about a collection of archived documents, which in turn can be queried through a semantic query language (SPARQL). This allows running advanced queries by combining metadata of the documents (like publication date) and content-based semantic information (like entities mentioned in the documents). However, the results returned by such structured queries can be numerous and moreover they all equally match the query. In this paper, we deal with this problem and formalize the task of "ranking archived documents for structured queries on semantic layers". Then, we propose two ranking models for the problem at hand which jointly consider: i) the relativeness of documents to entities, ii) the timeliness of documents, and iii) the temporal relations among the entities. The experimental results on a new evaluation dataset show the effectiveness of the proposed models and allow us to understand their limitation

    Semantic browsing of digital collections

    Get PDF
    Visiting museums is an increasingly popular pastime. Studies have shown that visitors can draw on their museum experience, long after their visit, to learn new things in practical situations. Rather than viewing a visit as a single learning event, we are interested in ways of extending the experience to allow visitors to access online resources tailored to their interests. Museums typically have extensive archives that can be made available online, the challenge is to match these resources to the visitor’s interests and present them in a manner that facilitates exploration and engages the visitor. We propose the use of knowledge level resource descriptions to identify relevant resources and create structured presentations. A system that embodies this approach, which is in use in a UK museum, is presented and the applicability of the approach to the broader semantic web is discussed

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Exploiting Synergy Between Ontologies and Recommender Systems

    No full text
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured
    • …
    corecore