4,223 research outputs found

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Towards a Distributed Quantum Computing Ecosystem

    Full text link
    The Quantum Internet, by enabling quantum communications among remote quantum nodes, is a network capable of supporting functionalities with no direct counterpart in the classical world. Indeed, with the network and communications functionalities provided by the Quantum Internet, remote quantum devices can communicate and cooperate for solving challenging computational tasks by adopting a distributed computing approach. The aim of this paper is to provide the reader with an overview about the main challenges and open problems arising with the design of a Distributed Quantum Computing ecosystem. For this, we provide a survey, following a bottom-up approach, from a communications engineering perspective. We start by introducing the Quantum Internet as the fundamental underlying infrastructure of the Distributed Quantum Computing ecosystem. Then we go further, by elaborating on a high-level system abstraction of the Distributed Quantum Computing ecosystem. Such an abstraction is described through a set of logical layers. Thereby, we clarify dependencies among the aforementioned layers and, at the same time, a road-map emerges

    Evaluating Rapid Application Development with Python for Heterogeneous Processor-based FPGAs

    Full text link
    As modern FPGAs evolve to include more het- erogeneous processing elements, such as ARM cores, it makes sense to consider these devices as processors first and FPGA accelerators second. As such, the conventional FPGA develop- ment environment must also adapt to support more software- like programming functionality. While high-level synthesis tools can help reduce FPGA development time, there still remains a large expertise gap in order to realize highly performing implementations. At a system-level the skill set necessary to integrate multiple custom IP hardware cores, interconnects, memory interfaces, and now heterogeneous processing elements is complex. Rather than drive FPGA development from the hardware up, we consider the impact of leveraging Python to ac- celerate application development. Python offers highly optimized libraries from an incredibly large developer community, yet is limited to the performance of the hardware system. In this work we evaluate the impact of using PYNQ, a Python development environment for application development on the Xilinx Zynq devices, the performance implications, and bottlenecks associated with it. We compare our results against existing C-based and hand-coded implementations to better understand if Python can be the glue that binds together software and hardware developers.Comment: To appear in 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM'17

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies
    • …
    corecore