3,913 research outputs found

    Pattern based processing of XPath queries

    Get PDF
    As the popularity of areas including document storage and distributed systems continues to grow, the demand for high performance XML databases is increasingly evident. This has led to a number of research eorts aimed at exploiting the maturity of relational database systems in order to in- crease XML query performance. In our approach, we use an index structure based on a metamodel for XML databases combined with relational database technology to facilitate fast access to XML document elements. The query process involves transforming XPath expressions to SQL which can be executed over our optimised query engine. As there are many dierent types of XPath queries, varying processing logic may be applied to boost performance not only to indi- vidual XPath axes, but across multiple axes simultaneously. This paper describes a pattern based approach to XPath query processing, which permits the execution of a group of XPath location steps in parallel

    Learning Sentence-internal Temporal Relations

    Get PDF
    In this paper we propose a data intensive approach for inferring sentence-internal temporal relations. Temporal inference is relevant for practical NLP applications which either extract or synthesize temporal information (e.g., summarisation, question answering). Our method bypasses the need for manual coding by exploiting the presence of markers like after", which overtly signal a temporal relation. We first show that models trained on main and subordinate clauses connected with a temporal marker achieve good performance on a pseudo-disambiguation task simulating temporal inference (during testing the temporal marker is treated as unseen and the models must select the right marker from a set of possible candidates). Secondly, we assess whether the proposed approach holds promise for the semi-automatic creation of temporal annotations. Specifically, we use a model trained on noisy and approximate data (i.e., main and subordinate clauses) to predict intra-sentential relations present in TimeBank, a corpus annotated rich temporal information. Our experiments compare and contrast several probabilistic models differing in their feature space, linguistic assumptions and data requirements. We evaluate performance against gold standard corpora and also against human subjects

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure
    corecore