378 research outputs found

    Normalization and parsing algorithms for uncertain input

    Get PDF

    Evaluating Parsers with Dependency Constraints

    Get PDF
    Many syntactic parsers now score over 90% on English in-domain evaluation, but the remaining errors have been challenging to address and difficult to quantify. Standard parsing metrics provide a consistent basis for comparison between parsers, but do not illuminate what errors remain to be addressed. This thesis develops a constraint-based evaluation for dependency and Combinatory Categorial Grammar (CCG) parsers to address this deficiency. We examine the constrained and cascading impact, representing the direct and indirect effects of errors on parsing accuracy. This identifies errors that are the underlying source of problems in parses, compared to those which are a consequence of those problems. Kummerfeld et al. (2012) propose a static post-parsing analysis to categorise groups of errors into abstract classes, but this cannot account for cascading changes resulting from repairing errors, or limitations which may prevent the parser from applying a repair. In contrast, our technique is based on enforcing the presence of certain dependencies during parsing, whilst allowing the parser to choose the remainder of the analysis according to its grammar and model. We draw constraints for this process from gold-standard annotated corpora, grouping them into abstract error classes such as NP attachment, PP attachment, and clause attachment. By applying constraints from each error class in turn, we can examine how parsers respond when forced to correctly analyse each class. We show how to apply dependency constraints in three parsers: the graph-based MSTParser (McDonald and Pereira, 2006) and the transition-based ZPar (Zhang and Clark, 2011b) dependency parsers, and the C&C CCG parser (Clark and Curran, 2007b). Each is widely-used and influential in the field, and each generates some form of predicate-argument dependencies. We compare the parsers, identifying common sources of error, and differences in the distribution of errors between constrained and cascaded impact. Our work allows us to contrast the implementations of each parser, and how they respond to constraint application. Using our analysis, we experiment with new features for dependency parsing, which encode the frequency of proposed arcs in large-scale corpora derived from scanned books. These features are inspired by and extend on the work of Bansal and Klein (2011). We target these features at the most notable errors, and show how they address some, but not all of the difficult attachments across newswire and web text. CCG parsing is particularly challenging, as different derivations do not always generate different dependencies. We develop dependency hashing to address semantically redundant parses in n-best CCG parsing, and demonstrate its necessity and effectiveness. Dependency hashing substantially improves the diversity of n-best CCG parses, and improves a CCG reranker when used for creating training and test data. We show the intricacies of applying constraints to C&C, and describe instances where applying constraints causes the parser to produce a worse analysis. These results illustrate how algorithms which are relatively straightforward for constituency and dependency parsers are non-trivial to implement in CCG. This work has explored dependencies as constraints in dependency and CCG parsing. We have shown how dependency hashing can efficiently eliminate semantically redundant CCG n-best parses, and presented a new evaluation framework based on enforcing the presence of dependencies in the output of the parser. By otherwise allowing the parser to proceed as it would have, we avoid the assumptions inherent in other work. We hope this work will provide insights into the remaining errors in parsing, and target efforts to address those errors, creating better syntactic analysis for downstream applications

    Overview of the SPMRL 2013 shared task: cross-framework evaluation of parsing morphologically rich languages

    Get PDF
    This paper reports on the first shared task on statistical parsing of morphologically rich languages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the evaluation metrics for parsing MRLs given different representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios

    Complexity of Lexical Descriptions and its Relevance to Partial Parsing

    Get PDF
    In this dissertation, we have proposed novel methods for robust parsing that integrate the flexibility of linguistically motivated lexical descriptions with the robustness of statistical techniques. Our thesis is that the computation of linguistic structure can be localized if lexical items are associated with rich descriptions (supertags) that impose complex constraints in a local context. However, increasing the complexity of descriptions makes the number of different descriptions for each lexical item much larger and hence increases the local ambiguity for a parser. This local ambiguity can be resolved by using supertag co-occurrence statistics collected from parsed corpora. We have explored these ideas in the context of Lexicalized Tree-Adjoining Grammar (LTAG) framework wherein supertag disambiguation provides a representation that is an almost parse. We have used the disambiguated supertag sequence in conjunction with a lightweight dependency analyzer to compute noun groups, verb groups, dependency linkages and even partial parses. We have shown that a trigram-based supertagger achieves an accuracy of 92.1‰ on Wall Street Journal (WSJ) texts. Furthermore, we have shown that the lightweight dependency analysis on the output of the supertagger identifies 83‰ of the dependency links accurately. We have exploited the representation of supertags with Explanation-Based Learning to improve parsing effciency. In this approach, parsing in limited domains can be modeled as a Finite-State Transduction. We have implemented such a system for the ATIS domain which improves parsing eciency by a factor of 15. We have used the supertagger in a variety of applications to provide lexical descriptions at an appropriate granularity. In an information retrieval application, we show that the supertag based system performs at higher levels of precision compared to a system based on part-of-speech tags. In an information extraction task, supertags are used in specifying extraction patterns. For language modeling applications, we view supertags as syntactically motivated class labels in a class-based language model. The distinction between recursive and non-recursive supertags is exploited in a sentence simplification application

    Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich Languages

    Get PDF
    International audienceThis paper reports on the first shared task on statistical parsing of morphologically rich lan- guages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the eval- uation metrics for parsing MRLs given dif- ferent representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios
    corecore