1,009 research outputs found

    Generative Prior for Unsupervised Image Restoration

    Get PDF
    The challenge of restoring real world low-quality images is due to a lack of appropriate training data and difficulty in determining how the image was degraded. Recently, generative models have demonstrated great potential for creating high- quality images by utilizing the rich and diverse information contained within the model’s trained weights and learned latent representations. One popular type of generative model is the generative adversarial network (GAN). Many new methods have been developed to harness the information found in GANs for image manipulation. Our proposed approach is to utilize generative models for both understanding the degradation of an image and restoring it. We propose using a combination of cycle consistency losses and self-attention to enhance face images by first learning the degradation and then using this information to train a style-based neural network. We also aim to use the latent representation to achieve a high level of magnification for face images (x64). By incorporating the weights of a pre-trained StyleGAN into a restoration network with a vision transformer layer, we hope to improve the current state-of-the-art in face image restoration. Finally, we present a projection-based image-denoising algorithm named Noise2Code in the latent space of the VQGAN model with a fixed-point regularization strategy. The fixed-point condition follows the observation that the pre-trained VQGAN affects the clean and noisy images in a drastically different way. Unlike previous projection-based image restoration in the latent space, both the denoising network and VQGAN model parameters are jointly trained, although the latter is not needed during the testing. We report experimental results to demonstrate that the proposed Noise2Code approach is conceptually simple, computationally efficient, and generalizable to real-world degradation scenarios

    PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance

    Full text link
    Exploiting pre-trained diffusion models for restoration has recently become a favored alternative to the traditional task-specific training approach. Previous works have achieved noteworthy success by limiting the solution space using explicit degradation models. However, these methods often fall short when faced with complex degradations as they generally cannot be precisely modeled. In this paper, we propose PGDiff by introducing partial guidance, a fresh perspective that is more adaptable to real-world degradations compared to existing works. Rather than specifically defining the degradation process, our approach models the desired properties, such as image structure and color statistics of high-quality images, and applies this guidance during the reverse diffusion process. These properties are readily available and make no assumptions about the degradation process. When combined with a diffusion prior, this partial guidance can deliver appealing results across a range of restoration tasks. Additionally, PGDiff can be extended to handle composite tasks by consolidating multiple high-quality image properties, achieved by integrating the guidance from respective tasks. Experimental results demonstrate that our method not only outperforms existing diffusion-prior-based approaches but also competes favorably with task-specific models.Comment: GitHub: https://github.com/pq-yang/PGDif

    Going the Extra Mile in Face Image Quality Assessment:A Novel Database and Model

    Get PDF
    An accurate computational model for image quality assessment (IQA) benefits many vision applications, such as image filtering, image processing, and image generation. Although the study of face images is an important subfield in computer vision research, the lack of face IQA data and models limits the precision of current IQA metrics on face image processing tasks such as face superresolution, face enhancement, and face editing. To narrow this gap, in this paper, we first introduce the largest annotated IQA database developed to date, which contains 20,000 human faces -- an order of magnitude larger than all existing rated datasets of faces -- of diverse individuals in highly varied circumstances. Based on the database, we further propose a novel deep learning model to accurately predict face image quality, which, for the first time, explores the use of generative priors for IQA. By taking advantage of rich statistics encoded in well pretrained off-the-shelf generative models, we obtain generative prior information and use it as latent references to facilitate blind IQA. The experimental results demonstrate both the value of the proposed dataset for face IQA and the superior performance of the proposed model.Comment: Appearing in IEEE TM

    DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

    Full text link
    We present DiffBIR, which leverages pretrained text-to-image diffusion models for blind image restoration problem. Our framework adopts a two-stage pipeline. In the first stage, we pretrain a restoration module across diversified degradations to improve generalization capability in real-world scenarios. The second stage leverages the generative ability of latent diffusion models, to achieve realistic image restoration. Specifically, we introduce an injective modulation sub-network -- LAControlNet for finetuning, while the pre-trained Stable Diffusion is to maintain its generative ability. Finally, we introduce a controllable module that allows users to balance quality and fidelity by introducing the latent image guidance in the denoising process during inference. Extensive experiments have demonstrated its superiority over state-of-the-art approaches for both blind image super-resolution and blind face restoration tasks on synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR
    • …
    corecore