974 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction

    Full text link
    With the availability of vast amounts of user visitation history on location-based social networks (LBSN), the problem of Point-of-Interest (POI) prediction has been extensively studied. However, much of the research has been conducted solely on voluntary checkin datasets collected from social apps such as Foursquare or Yelp. While these data contain rich information about recreational activities (e.g., restaurants, nightlife, and entertainment), information about more prosaic aspects of people's lives is sparse. This not only limits our understanding of users' daily routines, but more importantly the modeling assumptions developed based on characteristics of recreation-based data may not be suitable for richer check-in data. In this work, we present an analysis of education "check-in" data using WiFi access logs collected at Purdue University. We propose a heterogeneous graph-based method to encode the correlations between users, POIs, and activities, and then jointly learn embeddings for the vertices. We evaluate our method compared to previous state-of-the-art POI prediction methods, and show that the assumptions made by previous methods significantly degrade performance on our data with dense(r) activity signals. We also show how our learned embeddings could be used to identify similar students (e.g., for friend suggestions).Comment: published in KDD'1

    A Survey on Point-of-Interest Recommendations Leveraging Heterogeneous Data

    Full text link
    Tourism is an important application domain for recommender systems. In this domain, recommender systems are for example tasked with providing personalized recommendations for transportation, accommodation, points-of-interest (POIs), or tourism services. Among these tasks, in particular the problem of recommending POIs that are of likely interest to individual tourists has gained growing attention in recent years. Providing POI recommendations to tourists \emph{during their trip} can however be especially challenging due to the variability of the users' context. With the rapid development of the Web and today's multitude of online services, vast amounts of data from various sources have become available, and these heterogeneous data sources represent a huge potential to better address the challenges of in-trip POI recommendation problems. In this work, we provide a comprehensive survey of published research on POI recommendation between 2017 and 2022 from the perspective of heterogeneous data sources. Specifically, we investigate which types of data are used in the literature and which technical approaches and evaluation methods are predominant. Among other aspects, we find that today's research works often focus on a narrow range of data sources, leaving great potential for future works that better utilize heterogeneous data sources and diverse data types for improved in-trip recommendations.Comment: 35 pages, 19 figure

    Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches

    Get PDF
    In recent years, location-based social networks (LBSNs) that allow members to share their location and provide related services, and point-of-interest (POIs) recommendations which suggest attractive places to visit, have become noteworthy and useful for users, research areas, industries, and advertising companies. The POI recommendation system combines different information sources and creates numerous research challenges and questions. New research in this field utilizes deep-learning techniques as a solution to the issues because it has the ability to represent the nonlinear relationship between users and items more effectively than other methods. Despite all the obvious improvements that have been made recently, this field still does not have an updated and integrated view of the types of methods, their limitations, features, and future prospects. This paper provides a systematic review focusing on recent research on this topic. First, this approach prepares an overall view of the types of recommendation methods, their challenges, and the various influencing factors that can improve model performance in POI recommendations, then it reviews the traditional machine-learning methods and deep-learning techniques employed in the POI recommendation and analyzes their strengths and weaknesses. The recently proposed models are categorized according to the method used, the dataset, and the evaluation metrics. It found that these articles give priority to accuracy in comparison with other dimensions of quality. Finally, this approach introduces the research trends and future orientations, and it realizes that POI recommender systems based on deep learning are a promising future work

    DeePOF: A hybrid approach of deep convolutional neural network and friendship to Point‐of‐Interest (POI) recommendation system in location‐based social networks

    Get PDF
    Today, millions of active users spend a percentage of their time on location-based social networks like Yelp and Gowalla and share their rich information. They can easily learn about their friends\u27 behaviors and where they are visiting and be influenced by their style. As a result, the existence of personalized recommendations and the investigation of meaningful features of users and Point of Interests (POIs), given the challenges of rich contents and data sparsity, is a substantial task to accurately recommend the POIs and interests of users in location-based social networks (LBSNs). This work proposes a novel pipeline of POI recommendations named DeePOF based on deep learning and the convolutional neural network. This approach only takes into consideration the influence of the most similar pattern of friendship instead of the friendship of all users. The mean-shift clustering technique is used to detect similarity. The most similar friends\u27 spatial and temporal features are fed into our deep CNN technique. The output of several proposed layers can predict latitude and longitude and the ID of subsequent appropriate places, and then using the friendship interval of a similar pattern, the lowest distance venues are chosen. This combination method is estimated on two popular datasets of LBSNs. Experimental results demonstrate that analyzing similar friendships could make recommendations more accurate and the suggested model for recommending a sequence of top-k POIs outperforms state-of-the-art approaches
    • 

    corecore