5 research outputs found

    Use of topical and temporal profiles and their hybridisation for content-based recommendation

    Full text link
    In the context of content-based recommender systems, the aim of this paper is to determine how better profiles can be built and how these affect the recommendation process based on the incorporation of temporality, i.e. the inclusion of time in the recommendation process, and topicality, i.e. the representation of texts associated with users and items using topics and their combination. The main contribution of the paper is to present two different ways of hybridising these two dimensions and to evaluate and compare them with other alternatives

    Executing, Comparing, and Reusing Linked Data-Based Recommendation Algorithms With the Allied Framework

    Get PDF
    International audienceData published on the Web following the Linked Data principles has resulted in a global data space called the Web of Data. These principles led to semantically interlink and connect different resources at data level regardless their structure, authoring, location, etc. The tremendous and continuous growth of the Web of Data also implies that now it is more likely to find resources that describe real-life concepts. However, discovering and recommending relevant related resources is still an open research area. This chapter studies recommender systems that use Linked Data as a source containing a significant amount of available resources and their relationships useful to produce recommendations. Furthermore, it also presents a framework to deploy and execute state-of-the-art algorithms for Linked Data that have been re-implemented to measure and benchmark them in different application domains and without being bound to a unique dataset

    Exploiting Big Data for Enhanced Representations in Content-Based Recommender Systems

    No full text
    The recent explosion of Big Data is offering new chances and challenges to all those platforms that provide personalized access to information sources, such as recommender systems and personalized search engines. In this context, social networks are gaining more and more interests since they represent a perfect source to trigger personalization tasks. Indeed, users naturally leave on these platforms a lot of data about their preferences, feelings, and friendships. Hence, those data are really valuable for addressing the cold start problem of recommender systems. On the other hand, since content shared on social networks is noisy and heterogeneous, information extracted must be hardly processed to build user profiles that can effectively mirror user interests and needs. In this paper we investigated the effectiveness of external knowledge derived from Wikipedia in representing both documents and user profiles in a recommendation scenario. Specifically, we compared a classical keyword-based representation with two techniques that are able to map unstructured text with Wikipedia pages. The advantage of using this representation is that documents and user profiles become richer, more human-readable, less noisy, and potentially connected to the Linked Open Data (LOD) cloud. The goal of our preliminary experimental evaluation was twofolds: 1) to define the representation that best reflects user preferences; 2) to define the representation that provides the best predictive accuracy. We implemented a news recommender for a preliminary evaluation of our model. We involved more than 50 Facebook and Twitter users and we demonstrated that the encyclopedic-based representation is an effective way for modeling both user profiles and documents

    Recommender Systems based on Linked Data

    Get PDF
    Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data
    corecore