115 research outputs found

    A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI

    Full text link
    With respect to spatial overlap, CNN-based segmentation of short axis cardiovascular magnetic resonance (CMR) images has achieved a level of performance consistent with inter observer variation. However, conventional training procedures frequently depend on pixel-wise loss functions, limiting optimisation with respect to extended or global features. As a result, inferred segmentations can lack spatial coherence, including spurious connected components or holes. Such results are implausible, violating the anticipated topology of image segments, which is frequently known a priori. Addressing this challenge, published work has employed persistent homology, constructing topological loss functions for the evaluation of image segments against an explicit prior. Building a richer description of segmentation topology by considering all possible labels and label pairs, we extend these losses to the task of multi-class segmentation. These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set, without sacrificing overlap performance.Comment: To be presented at the STACOM workshop at MICCAI 202

    Persistent Homology with Improved Locality Information for more Effective Delineation

    Full text link
    We present a new, more effective way to use Persistent Homology (PH), a method to compare the topology of two data sets, for training deep networks to delineate road networks in aerial images and neuronal processes in microscopy scans. Its essence is in a novel filtration function, derived from a fusion of two existing techniques: thresholding-based filtration, previously used to train deep networks to segment medical images, and filtration with height functions, used before for comparison of 2D and 3D shapes. We experimentally demonstrate that deep networks trained with our Persistent-Homology-based loss yield reconstructions of road networks and neuronal processes that preserve the connectivity of the originals better than existing topological and non-topological loss functions

    Topologically faithful image segmentation via induced matching of persistence barcodes

    Full text link
    Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching

    Topological Learning for Brain Networks

    Full text link
    This paper proposes a novel topological learning framework that can integrate networks of different sizes and topology through persistent homology. This is possible through the introduction of a new topological loss function that enables such challenging task. The use of the proposed loss function bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations with ground truth to assess the effectiveness of the topological loss in discriminating networks with different topology. The method is further applied to a twin brain imaging study in determining if the brain network is genetically heritable. The challenge is in overlaying the topologically different functional brain networks obtained from the resting-state functional MRI (fMRI) onto the template structural brain network obtained through the diffusion MRI (dMRI)

    Topological Deep Learning: Going Beyond Graph Data

    Full text link
    Topological deep learning is a rapidly growing field that pertains to the development of deep learning models for data supported on topological domains such as simplicial complexes, cell complexes, and hypergraphs, which generalize many domains encountered in scientific computations. In this paper, we present a unifying deep learning framework built upon a richer data structure that includes widely adopted topological domains. Specifically, we first introduce combinatorial complexes, a novel type of topological domain. Combinatorial complexes can be seen as generalizations of graphs that maintain certain desirable properties. Similar to hypergraphs, combinatorial complexes impose no constraints on the set of relations. In addition, combinatorial complexes permit the construction of hierarchical higher-order relations, analogous to those found in simplicial and cell complexes. Thus, combinatorial complexes generalize and combine useful traits of both hypergraphs and cell complexes, which have emerged as two promising abstractions that facilitate the generalization of graph neural networks to topological spaces. Second, building upon combinatorial complexes and their rich combinatorial and algebraic structure, we develop a general class of message-passing combinatorial complex neural networks (CCNNs), focusing primarily on attention-based CCNNs. We characterize permutation and orientation equivariances of CCNNs, and discuss pooling and unpooling operations within CCNNs in detail. Third, we evaluate the performance of CCNNs on tasks related to mesh shape analysis and graph learning. Our experiments demonstrate that CCNNs have competitive performance as compared to state-of-the-art deep learning models specifically tailored to the same tasks. Our findings demonstrate the advantages of incorporating higher-order relations into deep learning models in different applications
    • …
    corecore