365 research outputs found

    Cooperation of unmanned systems for agricultural applications: A theoretical framework

    Get PDF
    Agriculture 4.0 comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management with the objective of optimising production by accounting for variabilities and uncertainties within agricultural systems. Autonomous ground and aerial vehicles can lead to favourable improvements in management by performing in-field tasks in a time-effective way. In particular, greater benefits can be achieved by allowing cooperation and collaborative action among unmanned vehicles, both aerial and ground, to perform in-field operations in precise and time-effective ways. In this work, the preliminary and crucial step of analysing and understanding the technical and methodological challenges concerning the main problems involved is performed. An overview of the agricultural scenarios that can benefit from using collaborative machines and the corresponding cooperative schemes typically adopted in this framework are presented. A collection of kinematic and dynamic models for different categories of autonomous aerial and ground vehicles is provided, which represents a crucial step in understanding the vehicles behaviour when full autonomy is desired. Last, a collection of the state-of-the-art technologies for the autonomous guidance of drones is provided, summarising their peculiar characteristics, and highlighting their advantages and shortcomings with a specific focus on the Agriculture 4.0 framework. A companion paper reports the application of some of these techniques in a complete case study in sloped vineyards, applying the proposed multi-phase collaborative scheme introduced here

    Tube-based Robust MPC Processor-In-the-Loop Validation for Fixed-Wing UAVs

    Get PDF
    Real systems, as Unmanned Aerial Vehicles (UAVs), are usually subject to environmental disturbances, which could compromise the mission accomplishment. For this reason, the main idea proposed in this research is the design of a robust controller, as autopilot control system candidate for a fixedwing UAV. In detail, the inner loop of the autopilot system is designed with a tube-based robust model predictive control (TRMPC) scheme, able to handle additive noise. Moreover, the navigation outer loop is regulated by a proportional-integralderivative controller. The proposed TRMPC is composed of two parts: (i) a linear nominal dynamics, evaluated online with an optimization problem, and (ii) a linear error dynamics, which includes a feedback gain matrix, evaluated offline. The key aspects of the proposed methodology are: (i) offline evaluation of the feedback gain matrix, and (ii) robustness to random, bounded disturbances. Moreover, a path-following algorithm is designated for the guidance task, which provides the reference heading angle as input to the control algorithm. Software-in-theloop and processor-in-the-loop simulations have been performed to validate the proposed approach. The obtained performance have been evaluated in terms of tracking capabilities and computational load, assessing the real-time implementability compliance with the XMOS development board, selected as continuation of previous works

    A Survey of path following control strategies for UAVs focused on quadrotors

    Get PDF
    The trajectory control problem, defined as making a vehicle follow a pre-established path in space, can be solved by means of trajectory tracking or path following. In the trajectory tracking problem a timed reference position is tracked. The path following approach removes any time dependence of the problem, resulting in many advantages on the control performance and design. An exhaustive review of path following algorithms applied to quadrotor vehicles has been carried out, the most relevant are studied in this paper. Then, four of these algorithms have been implemented and compared in a quadrotor simulation platform: Backstepping and Feedback Linearisation control-oriented algorithms and NLGL and Carrot-Chasing geometric algorithms.Peer ReviewedPostprint (author's final draft

    A review of path following control strategies for autonomous robotic vehicles: theory, simulations, and experiments

    Full text link
    This article presents an in-depth review of the topic of path following for autonomous robotic vehicles, with a specific focus on vehicle motion in two dimensional space (2D). From a control system standpoint, path following can be formulated as the problem of stabilizing a path following error system that describes the dynamics of position and possibly orientation errors of a vehicle with respect to a path, with the errors defined in an appropriate reference frame. In spite of the large variety of path following methods described in the literature we show that, in principle, most of them can be categorized in two groups: stabilization of the path following error system expressed either in the vehicle's body frame or in a frame attached to a "reference point" moving along the path, such as a Frenet-Serret (F-S) frame or a Parallel Transport (P-T) frame. With this observation, we provide a unified formulation that is simple but general enough to cover many methods available in the literature. We then discuss the advantages and disadvantages of each method, comparing them from the design and implementation standpoint. We further show experimental results of the path following methods obtained from field trials testing with under-actuated and fully-actuated autonomous marine vehicles. In addition, we introduce open-source Matlab and Gazebo/ROS simulation toolboxes that are helpful in testing path following methods prior to their integration in the combined guidance, navigation, and control systems of autonomous vehicles

    Prohibited Volume Avoidance for Aircraft

    No full text
    This thesis describes the development of a pilot override control system that prevents aircraft entering critical regions of space, known as prohibited volumes. The aim is to prevent another 9/11 style terrorist attack, as well as act as a general safety system for transport aircraft. The thesis presents the design and implementation of three core modules in the system; the trajectory generation algorithm, the trigger mechanism for the pilot override and the trajectory following element. The trajectory generation algorithm uses a direct multiple shooting strategy to provide trajectories through online computation that avoid pre-defi ned prohibited volume exclusion regions, whilst accounting for the manoeuvring capabilities of the aircraft. The trigger mechanism incorporates the logic that decides the time at which it is suitable for the override to be activated, an important consideration for ensuring that the system is not overly restrictive for a pilot. A number of methods are introduced, and for safety purposes a composite trigger that incorporates di fferent strategies is recommended. Trajectory following is best achieved via a nonlinear guidance law. The guidance logic sends commands in pitch, roll and yaw to the control surfaces of the aircraft, in order to closely follow the generated avoidance trajectory. Testing and validation is performed using a full motion simulator, with volunteers flying a representative aircraft model and attempting to penetrate prohibited volumes. The proof-of-concept system is shown to work well, provided that extreme aircraft manoeuvres are prevented near the exclusion regions. These hard manoeuvring envelope constraints allow the trajectory following controllers to follow avoidance trajectories accurately from an initial state within the bounding set. In order to move the project closer to a commercial product, operator and regulator input is necessary, particularly due to the radical nature of the pilot override system
    • …
    corecore