435 research outputs found

    Coboundary expanders

    Full text link
    We describe a natural topological generalization of edge expansion for graphs to regular CW complexes and prove that this property holds with high probability for certain random complexes.Comment: Version 2: significant rewrite. 18 pages, title changed, and main theorem extended to more general random complexe

    Finite Simple Groups as Expanders

    Full text link
    We prove that there exist kNk\in N and 0<ϵR0<\epsilon\in R such that every non-abelian finite simple group GG, which is not a Suzuki group, has a set of kk generators for which the Cayley graph \Cay(G; S) is an ϵ\epsilon-expander.Comment: 10 page

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which infn1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as nn\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any ϵ>0\epsilon>0, there exists K=K(ϵ,d)d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any kKk\ge K, for any point qRdq \in \mathbb{R}^d and for any finite Borel measure μ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1Ak\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an ϵ\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq
    corecore